2voy
From Proteopedia
CryoEM model of CopA, the copper transporting ATPase from Archaeoglobus fulgidus
Structural highlights
FunctionAT2A1_RABIT This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction (By similarity). Evolutionary ConservationCheckto colour the structure by Evolutionary Conservation, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedP-type ATPases play an important role in Cu homeostasis, which provides sufficient Cu for metalloenzyme biosynthesis but prevents oxidative damage of free Cu to the cell. The P(IB) group of P-type ATPases includes ATP-dependent pumps of Cu and other transition metal ions, and it is distinguished from other family members by the presence of N-terminal metal-binding domains (MBD). We have determined structures of two constructs of a Cu pump from Archaeoglobus fulgidus (CopA) by cryoelectron microscopy of tubular crystals, which reveal the overall architecture and domain organization of the molecule. By comparing these structures, we localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle. We have built a pseudoatomic model by fitting existing crystallographic structures into the cryoelectron microscopy maps for CopA, which suggest a Cu-dependent regulatory role for the MBD. Structure of a copper pump suggests a regulatory role for its metal-binding domain.,Wu CC, Rice WJ, Stokes DL Structure. 2008 Jun;16(6):976-85. PMID:18547529[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|