3tjm

From Proteopedia

Jump to: navigation, search

Crystal Structure of the Human Fatty Acid Synthase Thioesterase Domain with an Activate Site-Specific Polyunsaturated Fatty Acyl Adduct

Structural highlights

3tjm is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.48Å
Ligands:7FA
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FAS_HUMAN Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein.

Publication Abstract from PubMed

Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl gamma-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated gamma-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an alpha helix (the "helix flap"). We then found inhibition of the TE domain activity by the PUFA dihomo-gamma-linolenic acid; gamma- and alpha-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-gamma-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-{gamma}-linolenic acid.,Zhang W, Chakravarty B, Zheng F, Gu Z, Wu H, Mao J, Wakil SJ, Quiocho FA Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15757-62. Epub 2011 Sep 9. PMID:21908709[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Zhang W, Chakravarty B, Zheng F, Gu Z, Wu H, Mao J, Wakil SJ, Quiocho FA. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-{gamma}-linolenic acid. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15757-62. Epub 2011 Sep 9. PMID:21908709 doi:10.1073/pnas.1112334108

Contents


PDB ID 3tjm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools