3vhw
From Proteopedia
Crystal structure of the human vitamin D receptor ligand binding domain complexed with 4-MP
Structural highlights
DiseaseVDR_HUMAN Defects in VDR are the cause of rickets vitamin D-dependent type 2A (VDDR2A) [MIM:277440. A disorder of vitamin D metabolism resulting in severe rickets, hypocalcemia and secondary hyperparathyroidism. Most patients have total alopecia in addition to rickets.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] FunctionVDR_HUMAN Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.[11] [12] [13] [14] Publication Abstract from PubMedUp to the present, numerous vitamin D derivatives have been synthesized, but most of them have straight side chains, and there are few publications described about in vitro and in vivo evaluations on bone by vitamin D derivatives. In our previous paper, we reported the synthesis of various C-2 substituted vitamin D derivatives (2b-2i) with a 2,2-dimethylcyclopentanone unit in the CD-ring side chains, and that the derivatives have strong activity for enhancing bone growth. On the basis of results, this time, we report the synthesis of 2alpha-substituted vitamin D(3) derivatives with chiral cyclopentanone (3-6 and 12-16). These derivatives were obtained by Pd-coupling reaction with A-ring precursor and CD-rings precursor. We evaluated novel derivatives in vitro assays, for affinities for VDR and transactivation assays by human osteosarcoma (HOS) cells. In this research, we demonstrated that some novel vitamin D derivatives (12-MP, 13-MP, 15-MP and 16-LP) have strong transactivation activities in spite of lower affinity for VDR than 1. In addition, we also demonstrated that these derivatives have strong activities for enhancing bone growth using OVX therapeutic rats. This article is part of a Special Issue entitled 'Vitamin D Workshop'. Synthesis of novel C-2 substituted vitamin D derivatives having ringed side chains and their biological evaluation on bone.,Saito H, Takagi K, Horie K, Kakuda S, Takimoto-Kamimura M, Ochiai E, Chida T, Harada Y, Takenouchi K, Kittaka A J Steroid Biochem Mol Biol. 2013 Feb 13. pii: S0960-0760(13)00025-3. doi:, 10.1016/j.jsbmb.2013.02.004. PMID:23416104[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 1 reviews cite this structure No citations found See AlsoReferences
|
|