4k2c

From Proteopedia

Jump to: navigation, search

HSA Ligand Free

Structural highlights

4k2c is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.23Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ALBU_HUMAN Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1] [2] [3] [4]

Function

ALBU_HUMAN Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5]

Publication Abstract from PubMed

Glucose reacts with proteins nonenzymatically under physiological conditions. Such glycation is exacerbated in diabetic patients with high levels of blood sugar and induces various complications. Human albumin serum (HSA) is the most abundant protein in plasma and is glycated by glucose. The glycation sites on HSA remain controversial among different studies. Here, we report two protein crystal structures of HSA in complex with either glucose or fructose. These crystal structures reveal the presence of linear forms of sugar for both monosaccharides. The linear form of glucose forms a covalent bond to Lys-195 of HSA, but this is not the case for fructose. Based on these structures, we propose a mechanism for glucose ring opening involving both residues Lys-195 and Lys-199. These results provide mechanistic insights to understand the glucose ring-opening reaction and the glycation of proteins by monosaccharides.

Structural mechanism of ring-opening reaction of glucose by human serum albumin.,Wang Y, Yu H, Shi X, Luo Z, Lin D, Huang M J Biol Chem. 2013 May 31;288(22):15980-7. doi: 10.1074/jbc.M113.467027. Epub 2013, Apr 16. PMID:23592780[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
  2. Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
  3. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
  4. Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
  5. Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317
  6. Wang Y, Yu H, Shi X, Luo Z, Lin D, Huang M. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J Biol Chem. 2013 May 31;288(22):15980-7. doi: 10.1074/jbc.M113.467027. Epub 2013, Apr 16. PMID:23592780 doi:http://dx.doi.org/10.1074/jbc.M113.467027

Contents


PDB ID 4k2c

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools