| Structural highlights
Function
1433Z_HUMAN Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Macrocyclization can be used to constrain peptides in their bioactive conformations, thereby supporting target affinity and bioactivity. In particular, for the targeting of challenging protein-protein interactions, macrocyclic peptides have proven to be very useful. Available approaches focus on the stabilization of alpha-helices, which limits their general applicability. Here we report for the first time on the use of ring-closing alkyne metathesis for the stabilization of an irregular peptide secondary structure. A small library of alkyne-crosslinked peptides provided a number of derivatives with improved target affinity relative to the linear parent peptide. In addition, we report the crystal structure of the highest-affinity derivative in a complex with its protein target 14-3-3zeta. It can be expected that the alkyne-based macrocyclization of irregular binding epitopes should give rise to new scaffolds suitable for targeting of currently intractable proteins.
Constraining an Irregular Peptide Secondary Structure through Ring-Closing Alkyne Metathesis.,Cromm PM, Wallraven K, Glas A, Bier D, Furstner A, Ottmann C, Grossmann TN Chembiochem. 2016 Sep 6. doi: 10.1002/cbic.201600362. PMID:27596722[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem. 1997 Nov 14;272(46):28882-8. PMID:9360956
- ↑ Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA. Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol. 2003 Dec;10(12):1054-7. Epub 2003 Oct 26. PMID:14578935 doi:10.1038/nsb1005
- ↑ Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004 Apr 21;23(8):1889-99. Epub 2004 Apr 8. PMID:15071501 doi:10.1038/sj.emboj.7600194
- ↑ Ganguly S, Weller JL, Ho A, Chemineau P, Malpaux B, Klein DC. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1222-7. Epub 2005 Jan 11. PMID:15644438 doi:0406871102
- ↑ Gu YM, Jin YH, Choi JK, Baek KH, Yeo CY, Lee KY. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 2006 Jan 9;580(1):305-10. Epub 2005 Dec 19. PMID:16376338 doi:S0014-5793(05)01485-7
- ↑ Cromm PM, Wallraven K, Glas A, Bier D, Furstner A, Ottmann C, Grossmann TN. Constraining an Irregular Peptide Secondary Structure through Ring-Closing Alkyne Metathesis. Chembiochem. 2016 Sep 6. doi: 10.1002/cbic.201600362. PMID:27596722 doi:http://dx.doi.org/10.1002/cbic.201600362
|