5m9x
From Proteopedia
Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to glycosylated resveratrol
Structural highlights
FunctionSUCP_BIFAA Catalyzes the reversible phosphorolysis of sucrose into alpha-D-glucose 1-phosphate (Glc1P) and D-fructose (PubMed:14740189, PubMed:20691225). Is involved in sucrose degradation. Also displays transglucosylation activity in vitro, by transferring the glucosyl moiety of Glc1P to a broad range of monomeric sugars, such as D- and L-arabinose, D- and L-arabitol, and xylitol (PubMed:14740189).[1] [2] Publication Abstract from PubMedHere we present a point mutation-triggered domain shift which switches the acceptor preference of a sucrose phosphorylase from phosphate to a variety of large polyphenolic compounds including resveratrol and quercetin, enabling their efficient glucosylation. The variant possesses a high affinity for aromatic substrates due to newly introduced pi-pi- and hydrophobic interactions in the altered active site. The domain shift brings about a substantially enlarged and multifunctional active site for polyphenol glucosylation and rare disaccharide production. The crystal structure of the variant with its product resveratrol-3-alpha-d-glucoside allows the prediction of the substrate scope and regioselectivity of the aromatic compounds' glucosylation sites. Switching enzyme specificity from phosphate to resveratrol glucosylation.,Kraus M, Grimm C, Seibel J Chem Commun (Camb). 2017 Nov 9;53(90):12181-12184. doi: 10.1039/c7cc05993k. PMID:29057405[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|