| Structural highlights
Function
POL2_CPMVS Movement protein: transports viral genome to neighboring plant cells directly through plasmosdesmata, without any budding. The movement protein allows efficient cell to cell propagation, by bypassing the host cell wall barrier. Acts by forming a tubular structure at the host plasmodesmata, enlarging it enough to allow free passage of virion capsids. Binds to GTP and to single-stranded RNA and single-stranded DNA in a non-sequence-specific manner.[1] [2] [3] [4] The cleavable C-terminus of small coat protein seems to be involved in the packaging of the virion RNAs. Also seems to act as suppressor of post-transcriptional gene silencing (PTGS), a mechanism of plant viral defense that limits the accumulation of viral RNAs.[5] [6] [7] [8]
Publication Abstract from PubMed
Cowpea mosaic virus (CPMV) is a picorna-like plant virus. As well as an intrinsic interest in CPMV as a plant pathogen, CPMV is of major interest in biotechnology applications such as nanotechnology. Here, we report high resolution cryo electron microscopy (cryo-EM) maps of wild type CPMV containing RNA-2, and of naturally-formed empty CPMV capsids. The resolution of these structures is sufficient to visualise large amino acids. We have refined an atomic model for each map and identified an essential amino acid involved in genome encapsidation. This work has furthered our knowledge of Picornavirales genome encapsidation and will assist further work in the development of CPMV as a biotechnological tool.
The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy.,Hesketh EL, Meshcheriakova Y, Thompson RF, Lomonossoff GP, Ranson NA Sci Rep. 2017 Apr 3;7(1):539. doi: 10.1038/s41598-017-00533-w. PMID:28373698[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Taylor KM, Spall VE, Butler PJ, Lomonossoff GP. The cleavable carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation. Virology. 1999 Mar 1;255(1):129-37. PMID:10049828
- ↑ Canizares MC, Taylor KM, Lomonossoff GP. Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing. J Gen Virol. 2004 Nov;85(Pt 11):3431-5. PMID:15483261 doi:http://dx.doi.org/85/11/3431
- ↑ Liu L, Grainger J, Canizares MC, Angell SM, Lomonossoff GP. Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology. 2004 May 20;323(1):37-48. PMID:15165817 doi:http://dx.doi.org/10.1016/j.virol.2004.02.013
- ↑ Carvalho CM, Pouwels J, van Lent JW, Bisseling T, Goldbach RW, Wellink J. The movement protein of cowpea mosaic virus binds GTP and single-stranded nucleic acid in vitro. J Virol. 2004 Feb;78(3):1591-4. PMID:14722313
- ↑ Taylor KM, Spall VE, Butler PJ, Lomonossoff GP. The cleavable carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation. Virology. 1999 Mar 1;255(1):129-37. PMID:10049828
- ↑ Canizares MC, Taylor KM, Lomonossoff GP. Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing. J Gen Virol. 2004 Nov;85(Pt 11):3431-5. PMID:15483261 doi:http://dx.doi.org/85/11/3431
- ↑ Liu L, Grainger J, Canizares MC, Angell SM, Lomonossoff GP. Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology. 2004 May 20;323(1):37-48. PMID:15165817 doi:http://dx.doi.org/10.1016/j.virol.2004.02.013
- ↑ Carvalho CM, Pouwels J, van Lent JW, Bisseling T, Goldbach RW, Wellink J. The movement protein of cowpea mosaic virus binds GTP and single-stranded nucleic acid in vitro. J Virol. 2004 Feb;78(3):1591-4. PMID:14722313
- ↑ Hesketh EL, Meshcheriakova Y, Thompson RF, Lomonossoff GP, Ranson NA. The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy. Sci Rep. 2017 Apr 3;7(1):539. doi: 10.1038/s41598-017-00533-w. PMID:28373698 doi:http://dx.doi.org/10.1038/s41598-017-00533-w
|