| Structural highlights
Function
MFA1_PORG3 Structural subunit of the minor fimbriae (PubMed:12593606, PubMed:19589838, PubMed:24118823). These filamentous pili are attached to the cell surface; they mediate biofilm formation, adhesion onto host cells and onto other bacteria that are part of the oral microbiome (PubMed:11083792, PubMed:12593606, PubMed:15972485, PubMed:19589838, PubMed:23809984, PubMed:24118823, PubMed:26001707, PubMed:26437277). They play an important role in invasion of periodontal tissues and are recognized as major virulence factors. Mfa1 orthologs from different strains have highly divergent sequences, and this correlates with pathogenicity (Probable).[1] [2] [3] [4] [5] [6] [7] [8]
Publication Abstract from PubMed
Very little is known about how fimbriae of Bacteroidetes bacteria are assembled. To shed more light on this process, we solved the crystal structures of the shaft protein Mfa1, the regulatory protein Mfa2, and the tip protein Mfa3 from the periodontal pathogen Porphyromonas gingivalis. Together these build up part of the Mfa1 fimbria and represent three of the five proteins, Mfa1-5, encoded by the mfa1 gene cluster. Mfa1, Mfa2 and Mfa3 have the same overall fold i.e., two beta-sandwich domains. Upon polymerization, the first beta-strand of the shaft or tip protein is removed by indigenous proteases. Although the resulting void is expected to be filled by a donor-strand from another fimbrial protein, the mechanism by which it does so is still not established. In contrast, the first beta-strand in Mfa2, the anchoring protein, is firmly attached by a disulphide bond and is not cleaved. Based on the structural information, we created multiple mutations in P. gingivalis and analysed their effect on fimbrial polymerization and assembly in vivo. Collectively, these data suggest an important role for the C-terminal tail of Mfa1, but not of Mfa3, affecting both polymerization and maturation of downstream fimbrial proteins.
Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis.,Hall M, Hasegawa Y, Yoshimura F, Persson K Sci Rep. 2018 Jan 29;8(1):1793. doi: 10.1038/s41598-018-20067-z. PMID:29379120[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Chung WO, Demuth DR, Lamont RJ. Identification of a Porphyromonas gingivalis receptor for the Streptococcus gordonii SspB protein. Infect Immun. 2000 Dec;68(12):6758-62. PMID:11083792
- ↑ Umemoto T, Hamada N. Characterization of biologically active cell surface components of a periodontal pathogen. The roles of major and minor fimbriae of Porphyromonas gingivalis. J Periodontol. 2003 Jan;74(1):119-22. doi: 10.1902/jop.2003.74.1.119. PMID:12593606 doi:http://dx.doi.org/10.1902/jop.2003.74.1.119
- ↑ Park Y, Simionato MR, Sekiya K, Murakami Y, James D, Chen W, Hackett M, Yoshimura F, Demuth DR, Lamont RJ. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect Immun. 2005 Jul;73(7):3983-9. doi: 10.1128/IAI.73.7.3983-3989.2005. PMID:15972485 doi:http://dx.doi.org/10.1128/IAI.73.7.3983-3989.2005
- ↑ Hasegawa Y, Iwami J, Sato K, Park Y, Nishikawa K, Atsumi T, Moriguchi K, Murakami Y, Lamont RJ, Nakamura H, Ohno N, Yoshimura F. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. Microbiology. 2009 Oct;155(Pt 10):3333-47. doi: 10.1099/mic.0.028928-0. Epub 2009, Jul 9. PMID:19589838 doi:http://dx.doi.org/10.1099/mic.0.028928-0
- ↑ Nagano K, Abiko Y, Yoshida Y, Yoshimura F. Genetic and antigenic analyses of Porphyromonas gingivalis FimA fimbriae. Mol Oral Microbiol. 2013 Oct;28(5):392-403. doi: 10.1111/omi.12032. Epub 2013 Jul, 1. PMID:23809984 doi:http://dx.doi.org/10.1111/omi.12032
- ↑ Hasegawa Y, Nagano K, Ikai R, Izumigawa M, Yoshida Y, Kitai N, Lamont RJ, Murakami Y, Yoshimura F. Localization and function of the accessory protein Mfa3 in Porphyromonas gingivalis Mfa1 fimbriae. Mol Oral Microbiol. 2013 Dec;28(6):467-80. doi: 10.1111/omi.12040. Epub 2013 Oct , 5. PMID:24118823 doi:http://dx.doi.org/10.1111/omi.12040
- ↑ Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. A Major Fimbrilin Variant of Mfa1 Fimbriae in Porphyromonas gingivalis. J Dent Res. 2015 Aug;94(8):1143-8. doi: 10.1177/0022034515588275. Epub 2015 May, 22. PMID:26001707 doi:http://dx.doi.org/10.1177/0022034515588275
- ↑ Ikai R, Hasegawa Y, Izumigawa M, Nagano K, Yoshida Y, Kitai N, Lamont RJ, Yoshimura F, Murakami Y. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis. PLoS One. 2015 Oct 5;10(10):e0139454. doi: 10.1371/journal.pone.0139454., eCollection 2015. PMID:26437277 doi:http://dx.doi.org/10.1371/journal.pone.0139454
- ↑ Hall M, Hasegawa Y, Yoshimura F, Persson K. Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis. Sci Rep. 2018 Jan 29;8(1):1793. doi: 10.1038/s41598-018-20067-z. PMID:29379120 doi:http://dx.doi.org/10.1038/s41598-018-20067-z
|