6mny
From Proteopedia
Crystal structure of mouse BTK kinase domain in complex with compound 9a
Structural highlights
DiseaseBTK_MOUSE Defects in Btk are the cause of murine X-linked immunodeficiency (XID). FunctionBTK_MOUSE Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.[1] [2] [3] [4] [5] [6] Publication Abstract from PubMedPotent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties. Aminopyrazole Carboxamide Bruton's Tyrosine Kinase Inhibitors. Irreversible to Reversible Covalent Reactive Group Tuning.,Schnute ME, Benoit SE, Buchler IP, Caspers N, Grapperhaus ML, Han S, Hotchandani R, Huang N, Hughes RO, Juba BM, Kim KH, Liu E, McCarthy E, Messing D, Miyashiro JS, Mohan S, O'Connell TN, Ohren JF, Parikh MD, Schmidt M, Selness SR, Springer JR, Thanabal V, Trujillo JI, Walker DP, Wan ZK, Withka JM, Wittwer AJ, Wood NL, Xing L, Zapf CW, Douhan J 3rd ACS Med Chem Lett. 2018 Dec 3;10(1):80-85. doi: 10.1021/acsmedchemlett.8b00461., eCollection 2019 Jan 10. PMID:30655951[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|