6ncn
From Proteopedia
Fragment-based Discovery of an apoE4 Stabilizer
Structural highlights
DiseaseAPOE_HUMAN Defects in APOE are a cause of hyperlipoproteinemia type 3 (HLPP3) [MIM:107741; also known as familial dysbetalipoproteinemia. Individuals with HLPP3 are clinically characterized by xanthomas, yellowish lipid deposits in the palmar crease, or less specific on tendons and on elbows. The disorder rarely manifests before the third decade in men. In women, it is usually expressed only after the menopause. The vast majority of the patients are homozygous for APOE*2 alleles. More severe cases of HLPP3 have also been observed in individuals heterozygous for rare APOE variants. The influence of APOE on lipid levels is often suggested to have major implications for the risk of coronary artery disease (CAD). Individuals carrying the common APOE*4 variant are at higher risk of CAD.[1] [2] [3] [4] [5] Genetic variations in APOE are associated with Alzheimer disease type 2 (AD2) [MIM:104310. It is a late-onset neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death. Note=The APOE*4 allele is genetically associated with the common late onset familial and sporadic forms of Alzheimer disease. Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE*4 alleles in 42 families with late onset AD. Thus APOE*4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE*4 was virtually sufficient to cause AD by age 80. The mechanism by which APOE*4 participates in pathogenesis is not known.[6] Defects in APOE are a cause of sea-blue histiocyte disease (SBHD) [MIM:269600; also known as sea-blue histiocytosis. This disorder is characterized by splenomegaly, mild thrombocytopenia and, in the bone marrow, numerous histiocytes containing cytoplasmic granules which stain bright blue with the usual hematologic stains. The syndrome is the consequence of an inherited metabolic defect analogous to Gaucher disease and other sphingolipidoses.[7] [8] [9] Defects in APOE are a cause of lipoprotein glomerulopathy (LPG) [MIM:611771. LPG is an uncommon kidney disease characterized by proteinuria, progressive kidney failure, and distinctive lipoprotein thrombi in glomerular capillaries. It mainly affects people of Japanese and Chinese origin. The disorder has rarely been described in Caucasians.[10] [11] [12] [13] Defects in APOE are a cause of familial hypercholesterolemia (FH) [MIM:143890. FH is a condition characterized by elevated circulating cholesterol contained in either low-density lipoproteins alone or also in very-low-density lipoproteins.[14] [15] FunctionAPOE_HUMAN Mediates the binding, internalization, and catabolism of lipoprotein particles. It can serve as a ligand for the LDL (apo B/E) receptor and for the specific apo-E receptor (chylomicron remnant) of hepatic tissues. Publication Abstract from PubMedApolipoprotein E is a 299-residue lipid carrier protein produced in both the liver and the brain. The protein has three major isoforms denoted apoE2, apoE3, and apoE4 which differ at positions 112 and 158 and which occur at different frequencies in the human population. Genome-wide association studies indicate that the possession of two apoE4 alleles is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). In an attempt to identify a small molecule stabilizer of apoE4 function that may have utility as a therapy for Alzheimer's disease, we carried out an NMR-based fragment screen on the N-terminal domain of apoE4 and identified a benzyl amidine based fragment binder. In addition to NMR, binding was characterized using various other biophysical techniques, and a crystal structure of the bound core was obtained. Core elaboration ultimately yielded a compound that showed activity in an IL-6 and IL-8 cytokine release assay. Fragment-Based Discovery of an Apolipoprotein E4 (apoE4) Stabilizer.,Petros AM, Korepanova A, Jakob CG, Qiu W, Panchal SC, Wang J, Dietrich JD, Brewer JT, Pohlki F, Kling A, Wilcox K, Lakics V, Bahnassawy L, Reinhardt P, Partha SK, Bodelle PM, Lake M, Charych EI, Stoll VS, Sun C, Mohler EG J Med Chem. 2019 Apr 12. doi: 10.1021/acs.jmedchem.9b00178. PMID:30933499[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|