6r80
From Proteopedia
Structure of AFF4 C-terminal homology domain
Structural highlights
DiseaseAFF4_HUMAN Note=A chromosomal aberration involving AFF4 is found in acute lymphoblastic leukemia (ALL). Insertion ins(5;11)(q31;q13q23) that forms a MLL-AFF4 fusion protein. FunctionAFF4_HUMAN Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression.[1] [2] [3] Publication Abstract from PubMedAF4/FMR2 family member 4 (AFF4) is the scaffold protein of the multi-subunit super-elongation complex (SEC), which plays key roles in the release of RNA polymerase (Pol) II from promoter-proximal pausing and in the transactivation of HIV-1 transcription. AFF4 consists of an intrinsically disordered N-terminal region that interacts with other SEC subunits and a C-terminal homology domain (CHD) that is conserved among AF4/FMR2 family proteins, including AFF1, AFF2, AFF3, and AFF4. Here, we solved the X-ray crystal structure of the CHD in human AFF4 (AFF4-CHD) to 2.2 A resolution and characterized its biochemical properties. The structure disclosed that AFF4-CHD folds into a novel domain that consists of eight helices and is distantly related to tetratrico peptide repeat (TPR) motifs. Our analyses further revealed that AFF4-CHD mediates the formation of an AFF4 homodimer or an AFF1-AFF4 heterodimer. Results from fluorescence anisotropy experiments suggested that AFF4-CHD interacts with both RNA and DNA in vitro. Furthermore, we identified a surface loop region in AFF4-CHD as a substrate for the P-TEFb kinase cyclin-dependent kinase 9 (CDK9), which triggers release of Pol II from promoter-proximal pausing sites. In conclusion, the AFF-CHD structure and biochemical analyses reported here reveal the molecular basis for the homo- and heterodimerization of AFF proteins and implicate the AFF4-CHD in nucleic acid interactions. The high conservation of the CHD among several other proteins suggests that our results are relevant also for understanding other CHD-containing proteins and their dimerization behavior. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization.,Chen Y, Cramer P J Biol Chem. 2019 May 30. pii: RA119.008577. doi: 10.1074/jbc.RA119.008577. PMID:31147444[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|