6uzl
From Proteopedia
Cryo-EM structure of nucleotide-free MsbA reconstituted into peptidiscs, conformation 2
Structural highlights
FunctionMSBA_ECOLI Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation. Publication Abstract from PubMedPreviously we introduced peptidiscs as an alternative to detergents to stabilize membrane proteins in solution (Carlson et al., 2018). Here, we present 'on-gradient' reconstitution, a new gentle approach for the reconstitution of labile membrane-protein complexes, and used it to reconstitute Rhodobacter sphaeroides reaction center complexes, demonstrating that peptidiscs can adapt to transmembrane domains of very different sizes and shapes. Using the conventional 'on-bead' approach, we reconstituted Escherichia coli proteins MsbA and MscS and find that peptidiscs stabilize them in their native conformation and allow for high-resolution structure determination by cryo-electron microscopy. The structures reveal that peptidisc peptides can arrange around transmembrane proteins differently, thus revealing the structural basis for why peptidiscs can stabilize such a large variety of membrane proteins. Together, our results establish the gentle and easy-to-use peptidiscs as a potentially universal alternative to detergents as a means to stabilize membrane proteins in solution for structural and functional studies. New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins.,Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, Walz T Elife. 2020 Mar 3;9. pii: 53530. doi: 10.7554/eLife.53530. PMID:32125274[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|