6x0l
From Proteopedia
Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin
Structural highlights
FunctionHPF1_HUMAN Acts as a cofactor for serine ADP-ribosylation by conferring serine specificity on PARP1 and PARP2: interacts with PARP1 and PARP2 and is able to change amino acid specificity toward serine (PubMed:28190768, PubMed:29480802). Promotes histone serine ADP-ribosylation in response to DNA damage, limiting DNA damage-induced PARP1 hyper-automodification, and ensuring genome stability (PubMed:27067600, PubMed:28190768). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:29480802). HPF1 also promotes tyrosine ADP-ribosylation, probably by conferring tyrosine specificity on PARP1 (PubMed:30257210).[1] [2] [3] [4] Publication Abstract from PubMedBreaks in DNA strands recruit the protein PARP1 and its paralogue PARP2 to modify histones and other substrates through the addition of mono- and poly(ADP-ribose) (PAR)(1-5). In the DNA damage responses, this post-translational modification occurs predominantly on serine residues(6-8) and requires HPF1, an accessory factor that switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine(9,10). Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and provides an anchor for the recruitment of downstream signalling and repair factors to the sites of DNA breaks(2,11). Here, to understand the molecular mechanism by which PARP enzymes recognize DNA breaks within chromatin, we determined the cryo-electron-microscopic structure of human PARP2-HPF1 bound to a nucleosome. This showed that PARP2-HPF1 bridges two nucleosomes, with the broken DNA aligned in a position suitable for ligation, revealing the initial step in the repair of double-strand DNA breaks. The bridging induces structural changes in PARP2 that signal the recognition of a DNA break to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD(+) and substrate, which may enable PARP enzymes to act processively while bound to chromatin. The processes of PARP activation and the PARP catalytic cycle we describe can explain mechanisms of resistance to PARP inhibitors and will aid the development of better inhibitors as cancer treatments(12-16). Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin.,Bilokapic S, Suskiewicz MJ, Ahel I, Halic M Nature. 2020 Sep;585(7826):609-613. doi: 10.1038/s41586-020-2725-7. Epub 2020 Sep, 16. PMID:32939087[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|