7jy1
From Proteopedia
Structure of HbA with compound 19
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Publication Abstract from PubMedSickle cell disease (SCD) is a genetic disorder caused by a single point mutation (beta6 Glu --> Val) on the beta-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (+/-9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials. PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease.,Gopalsamy A, Aulabaugh AE, Barakat A, Beaumont KC, Cabral S, Canterbury DP, Casimiro-Garcia A, Chang JS, Chen MZ, Choi C, Dow RL, Fadeyi OO, Feng X, France SP, Howard RM, Janz JM, Jasti J, Jasuja R, Jones LH, King-Ahmad A, Knee KM, Kohrt JT, Limberakis C, Liras S, Martinez CA, McClure KF, Narayanan A, Narula J, Novak JJ, O'Connell TN, Parikh MD, Piotrowski DW, Plotnikova O, Robinson RP, Sahasrabudhe PV, Sharma R, Thuma BA, Vasa D, Wei L, Wenzel AZ, Withka JM, Xiao J, Yayla HG J Med Chem. 2021 Jan 14;64(1):326-342. doi: 10.1021/acs.jmedchem.0c01518. Epub , 2020 Dec 24. PMID:33356244[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|