Structural highlights
Function
MAX_HUMAN Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MYC or MAD which recognizes the core sequence 5'-CAC[GA]TG-3'. The MYC-MAX complex is a transcriptional activator, whereas the MAD-MAX complex is a repressor. May repress transcription via the recruitment of a chromatin remodeling complex containing H3 'Lys-9' histone methyltransferase activity.
Publication Abstract from PubMed
Despite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding. A lead STR directly inhibits MYC binding in cells, downregulates MYC-dependent expression programs at the proteome level and inhibits MYC-dependent cell proliferation. Co-crystallization and structure determination of a STR:E-box DNA complex confirms retention of DNA recognition in a near identical manner as full-length bHLH TFs. We additionally demonstrate structure-blind design of STRs derived from alternative bHLH-TFs, confirming that STRs can be used to develop highly specific mimetics of TFs targeting other gene regulatory elements.
Targeting MYC with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains.,Speltz TE, Qiao Z, Swenson CS, Shangguan X, Coukos JS, Lee CW, Thomas DM, Santana J, Fanning SW, Greene GL, Moellering RE Nat Biotechnol. 2023 Apr;41(4):541-551. doi: 10.1038/s41587-022-01504-x. Epub , 2022 Oct 27. PMID:36302987[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Speltz TE, Qiao Z, Swenson CS, Shangguan X, Coukos JS, Lee CW, Thomas DM, Santana J, Fanning SW, Greene GL, Moellering RE. Targeting MYC with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains. Nat Biotechnol. 2023 Apr;41(4):541-551. PMID:36302987 doi:10.1038/s41587-022-01504-x