7s8w
From Proteopedia
Amycolatopsis sp. T-1-60 N-succinylamino acid racemase/o-succinylbenzoate synthase R266Q mutant in complex with N-succinylphenylglycine
Structural highlights
FunctionNSAR_AMYSP Acts as a N-succinylamino acid racemase (NSAR) that catalyzes the racemization of N-succinyl-phenylglycine and N-succinyl-methionine (PubMed:14705949, PubMed:24955846). Can catalyze the racemization of a broad range of N-acylamino acids, including N-acetyl-D/L-methionine, N-propionyl-D/L-methionine, N-butyryl-D/L-methionine and N-chloroacetyl-L-valine (PubMed:7766084, PubMed:10194342, PubMed:14705949, PubMed:23130969). Also converts 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) to 2-succinylbenzoate (OSB) (PubMed:10194342, PubMed:14705949, PubMed:24955846). Catalyzes both N-succinylamino acid racemization and OSB synthesis at equivalent rates (PubMed:14705949, PubMed:24955846). NSAR is probably the biological function of this enzyme (Probable).[1] [2] [3] [4] [5] [6] [7] Publication Abstract from PubMedCatalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-pi interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity. Second-Shell Amino Acid R266 Helps Determine N-Succinylamino Acid Racemase Reaction Specificity in Promiscuous N-Succinylamino Acid Racemase/o-Succinylbenzoate Synthase Enzymes.,Truong DP, Rousseau S, Machala BW, Huddleston JP, Zhu M, Hull KG, Romo D, Raushel FM, Sacchettini JC, Glasner ME Biochemistry. 2021 Nov 30. doi: 10.1021/acs.biochem.1c00627. PMID:34845903[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|