7wkz

From Proteopedia

Jump to: navigation, search

Crystal structure of the HSA complex with mycophenolate and aripiprazole

Structural highlights

7wkz is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.992Å
Ligands:9SC, MOA
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ALBU_HUMAN Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1] [2] [3] [4]

Function

ALBU_HUMAN Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5]

Publication Abstract from PubMed

Mycophenolic acid (MP) is an active metabolite of mycophenolate mofetil, a widely used immunosuppressive drug. MP normally exhibits high plasma protein binding (97-99%), but its binding rate is decreased in patients with renal insufficiency. This decreased protein binding is thought to be associated with leukopenia, a side effect of MP. In this study, we characterized the change in protein binding of MP in renal failure patients. Our findings indicate that MP binds strongly to subdomain IIA of human serum albumin. X-ray crystallographic data indicated that the isobenzofuran group of MP forms a stacking interaction with Trp214, and the carboxyl group of MP is located at a position that allows the formation of hydrogen bonds with Tyr150, His242, or Arg257. Due to the specific binding of MP to subdomain IIA, MP is thought to be displaced by uremic toxin (3-carboxy-4-methyl-5-propyl-2-furan-propionic acid) and fatty acids (oleate or myristate) that can bind to subdomain IIA, resulting in the decreased plasma protein binding of MP in renal failure.

Structural Basis of the Change in the Interaction Between Mycophenolic Acid and Subdomain IIA of Human Serum Albumin During Renal Failure.,Yamasaki K, Teshima H, Yukizawa R, Kuyama K, Tsukigawa K, Nishi K, Otagiri M, Kawai A J Med Chem. 2023 Jan 12;66(1):951-961. doi: 10.1021/acs.jmedchem.2c01790. Epub , 2022 Dec 20. PMID:36538495[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
  2. Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
  3. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
  4. Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
  5. Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317
  6. Yamasaki K, Teshima H, Yukizawa R, Kuyama K, Tsukigawa K, Nishi K, Otagiri M, Kawai A. Structural Basis of the Change in the Interaction Between Mycophenolic Acid and Subdomain IIA of Human Serum Albumin During Renal Failure. J Med Chem. 2022 Dec 20. doi: 10.1021/acs.jmedchem.2c01790. PMID:36538495 doi:http://dx.doi.org/10.1021/acs.jmedchem.2c01790

Contents


PDB ID 7wkz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools