7yj1
From Proteopedia
Cryo-EM structure of SPT-ORMDL3 (ORMDL3-deltaN2) complex
Structural highlights
DiseaseSPTC2_HUMAN Hereditary sensory and autonomic neuropathy type 1. The disease is caused by variants affecting the gene represented in this entry. SPTLC2 disease mutations cause a shift in the substrate specificity of SPT resulting in the alternative use of L-alanine and L-glycine over its canonical substrate L-serine. This leads to the production of 1-deoxysphingolipids that cannot be correctly metabolized (PubMed:23658386).[1] [2] FunctionSPTC2_HUMAN Component of the serine palmitoyltransferase multisubunit enzyme (SPT) that catalyzes the initial and rate-limiting step in sphingolipid biosynthesis by condensing L-serine and activated acyl-CoA (most commonly palmitoyl-CoA) to form long-chain bases (PubMed:19416851, PubMed:19648650, PubMed:20504773, PubMed:20920666). The SPT complex is composed of SPTLC1, SPTLC2 or SPTLC3 and SPTSSA or SPTSSB. Within this complex, the heterodimer consisting of SPTLC1 and SPTLC2/SPTLC3 forms the catalytic core (PubMed:19416851). The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference (PubMed:19416851). The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA (PubMed:19416851, PubMed:19648650). The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference (PubMed:19416851, PubMed:19648650). Crucial for adipogenesis (By similarity).[UniProtKB:P97363][3] [4] [5] [6] See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Gong X | Liu P | Xie T