8gb2
From Proteopedia
Crystal structure of Apo-SAMHD1
Structural highlights
DiseaseSAMH1_HUMAN Defects in SAMHD1 are the cause of Aicardi-Goutieres syndrome type 5 (AGS5) [MIM:612952. A form of Aicardi-Goutieres syndrome, a genetically heterogeneous disease characterized by cerebral atrophy, leukoencephalopathy, intracranial calcifications, chronic cerebrospinal fluid (CSF) lymphocytosis, increased CSF alpha-interferon, and negative serologic investigations for common prenatal infection. Clinical features as thrombocytopenia, hepatosplenomegaly and elevated hepatic transaminases along with intermittent fever may erroneously suggest an infective process. Severe neurological dysfunctions manifest in infancy as progressive microcephaly, spasticity, dystonic posturing and profound psychomotor retardation. Death often occurs in early childhood.[1] [2] Defects in SAMHD1 are the cause of chilblain lupus type 2 (CHBL2) [MIM:614415. A rare cutaneous form of lupus erythematosus. Affected individuals present with painful bluish-red papular or nodular lesions of the skin in acral locations precipitated by cold and wet exposure at temperatures less than 10 degrees centigrade.[3] FunctionSAMH1_HUMAN Putative nuclease involved in innate immune response by acting as a negative regulator of the cell-intrinsic antiviral response. May play a role in mediating proinflammatory responses to TNF-alpha signaling.[4] [5] Publication Abstract from PubMedSterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom approximately 69â¯000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC(3)NH(2)) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC(3)NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization. Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding.,Egleston M, Dong L, Howlader AH, Bhat S, Orris B, Bianchet MA, Greenberg MM, Stivers JT ACS Chem Biol. 2023 Oct 20;18(10):2200-2210. doi: 10.1021/acschembio.3c00118. , Epub 2023 May 26. PMID:37233733[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Bhat S | Bianchet MA | Dong L | Egleston M | Greenberg MM | Howlader AH | Orris B | Stivers JT