8j81
From Proteopedia
MDM2 bound with a peptoid
Structural highlights
DiseaseMDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. FunctionMDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedPeptoids are a promising drug modality targeting disease-related proteins, but how a peptoid engages in protein binding is poorly understood. This is primarily due to a lack of high-resolution peptoid-protein complex structures and systematic physicochemical studies. Here, we present the first crystal structure of a peptoid bound to a protein, providing high-resolution structural information about how a peptoid binds to a protein. We previously reported a rigid peptoid, oligo(N-substituted alanine) (oligo-NSA), and developed an oligo-NSA-type peptoid that binds to MDM2. X-ray crystallographic analysis of the peptoid bound to MDM2 showed that the peptoid recognizes the MDM2 surface predominantly through the interaction of the N-substituents, while the main chain acts as a scaffold. Additionally, conformational, thermodynamic, and kinetic analysis of the peptoid and its derivatives with a less rigid main chain revealed that rigidification of the peptoid main chain contributes to improving the protein binding affinity. This improvement is thermodynamically attributed to an increased magnitude of the binding enthalpy change, and kinetically to an increased association rate and decreased dissociation rate. This study provides invaluable insights into the design of protein-targeting peptoids. A high-resolution structural characterization and physicochemical study of how a peptoid binds to an oncoprotein MDM2.,Yokomine M, Morimoto J, Fukuda Y, Ueda T, Takeuchi K, Umezawa K, Ago H, Matsuura H, Ueno G, Senoo A, Nagatoishi S, Tsumoto K, Sando S Chem Sci. 2024 Apr 19;15(19):7051-7060. doi: 10.1039/d4sc01540a. eCollection 2024 , May 15. PMID:38756815[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Ago H | Fukuda Y | Jumpei M | Matsuura H | Nagatoishi S | Sando S | Tsumoto K | Ueno G | Yamamoto M | Yokomine M