| Structural highlights
Function
HPSE_HUMAN Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially inactive at neutral pH but becomes active under acidic conditions such as during tumor invasion and in inflammatory processes. Facilitates cell migration associated with metastasis, wound healing and inflammation. Enhances shedding of syndecans, and increases endothelial invasion and angiogenesis in myelomas. Acts as procoagulant by increasing the generation of activation factor X in the presence of tissue factor and activation factor VII. Increases cell adhesion to the extacellular matrix (ECM), independent of its enzymatic activity. Induces AKT1/PKB phosphorylation via lipid rafts increasing cell mobility and invasion. Heparin increases this AKT1/PKB activation. Regulates osteogenesis. Enhances angiogenesis through up-regulation of SRC-mediated activation of VEGF. Implicated in hair follicle inner root sheath differentiation and hair homeostasis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Publication Abstract from PubMed
Heparanase-1 (HPSE1) is an endo-beta-d-glucuronidase that is the only mammalian enzyme known to cleave heparan sulfate (HS) of heparan sulfate proteoglycans (HSPG), a key component of the glycocalyx layer of the vascular endothelium matrix. Inhibition of HPSE1 has therapeutic potential for cancer and proteinuric kidney diseases. We previously reported that 2 showed a moderate potency as an HPSE1 inhibitor and an issue of selectivity against exo-beta-d-glucuronidase (GUSbeta) and glucocerebrosidase (GBA) remained. A structure-based lead optimization of 2 using X-ray co-crystal structure analysis and fragment molecular orbital calculation resulted in 4e, which showed a more than 7-fold increase in HPSE1 inhibitory activity. The subsequent introduction of a methyl group into the 6-hydroxy group of 4e resulted in 18 with reduced inhibitory activities against GUSbeta and GBA while maintaining the inhibitory activity against HPSE1. The inhibitory activities of 18 against serum HPSE1 in mice were significant and lasted for 4 h at doses of 3, 30, and 100 mg/kg. Compound 18 could be a novel lead compound for HPSE1 inhibitors with improved inhibitory activity against HPSE1 and increased HPSE1 selectivity over GUSbeta and GBA.
Structure-based lead optimization to improve potency and selectivity of a novel tetrahydroimidazo[1,2-a]pyridine-5-carboxylic acid series of heparanase-1 inhibitor.,Imai Y, Suzuki R, Wakasugi D, Matsuda D, Tanaka-Yamamoto N, Ohki Y, Mima M, Endo M, Tabata R, Matsuzawa H, Hasegawa Y, Kato S, Sugisaki M, Miyagawa H, Fujimoto N, Fukunaga T, Kato S, Takahashi T, Kakinuma H Bioorg Med Chem. 2023 Oct 1;93:117460. doi: 10.1016/j.bmc.2023.117460. Epub 2023 , Aug 26. PMID:37660465[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Okada Y, Yamada S, Toyoshima M, Dong J, Nakajima M, Sugahara K. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J Biol Chem. 2002 Nov 8;277(45):42488-95. Epub 2002 Sep 3. PMID:12213822 doi:http://dx.doi.org/10.1074/jbc.M206510200
- ↑ Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003 Jun;17(9):1015-25. PMID:12773484 doi:http://dx.doi.org/10.1096/fj.02-0773com
- ↑ Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem. 2004 May 28;279(22):23536-41. Epub 2004 Mar 24. PMID:15044433 doi:http://dx.doi.org/10.1074/jbc.M400554200
- ↑ Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006 Feb 1;66(3):1455-63. PMID:16452201 doi:http://dx.doi.org/10.1158/0008-5472.CAN-05-1811
- ↑ Malgouries S, Donovan M, Thibaut S, Bernard BA. Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol. 2008 Dec;17(12):1017-23. doi: 10.1111/j.1600-0625.2008.00739.x., Epub 2008 Jun 14. PMID:18557927 doi:http://dx.doi.org/10.1111/j.1600-0625.2008.00739.x
- ↑ Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I. Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer. 2008 Dec 1;123(11):2566-73. doi: 10.1002/ijc.23898. PMID:18798279 doi:http://dx.doi.org/10.1002/ijc.23898
- ↑ Fux L, Feibish N, Cohen-Kaplan V, Gingis-Velitski S, Feld S, Geffen C, Vlodavsky I, Ilan N. Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Res. 2009 Mar 1;69(5):1758-67. doi: 10.1158/0008-5472.CAN-08-1837. Epub, 2009 Feb 24. PMID:19244131 doi:http://dx.doi.org/10.1158/0008-5472.CAN-08-1837
- ↑ Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood. 2010 Mar 25;115(12):2449-57. doi: 10.1182/blood-2009-07-234757. Epub 2010 , Jan 22. PMID:20097882 doi:http://dx.doi.org/10.1182/blood-2009-07-234757
- ↑ Peterson SB, Liu J. Unraveling the specificity of heparanase utilizing synthetic substrates. J Biol Chem. 2010 May 7;285(19):14504-13. doi: 10.1074/jbc.M110.104166. Epub 2010, Feb 24. PMID:20181948 doi:http://dx.doi.org/10.1074/jbc.M110.104166
- ↑ Smith PN, Freeman C, Yu D, Chen M, Gatenby PA, Parish CR, Li RW. Heparanase in primary human osteoblasts. J Orthop Res. 2010 Oct;28(10):1315-22. doi: 10.1002/jor.21138. PMID:20309870 doi:http://dx.doi.org/10.1002/jor.21138
- ↑ Poon IK, Yee DY, Jones AL, Wood RJ, Davis DS, Freeman C, Parish CR, Hulett MD. Histidine-rich glycoprotein binds heparanase and regulates its enzymatic activity and cell surface interactions. Int J Biochem Cell Biol. 2010 Sep;42(9):1507-16. doi:, 10.1016/j.biocel.2010.05.008. Epub 2010 May 31. PMID:20561914 doi:http://dx.doi.org/10.1016/j.biocel.2010.05.008
- ↑ Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD. Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem. 2011 Feb 25;286(8):6490-9. doi: 10.1074/jbc.M110.183277. Epub 2010, Dec 3. PMID:21131364 doi:http://dx.doi.org/10.1074/jbc.M110.183277
- ↑ Imai Y, Suzuki R, Wakasugi D, Matsuda D, Tanaka-Yamamoto N, Ohki Y, Mima M, Endo M, Tabata R, Matsuzawa H, Hasegawa Y, Kato S, Sugisaki M, Miyagawa H, Fujimoto N, Fukunaga T, Kato S, Takahashi T, Kakinuma H. Structure-based lead optimization to improve potency and selectivity of a novel tetrahydroimidazo[1,2-a]pyridine-5-carboxylic acid series of heparanase-1 inhibitor. Bioorg Med Chem. 2023 Aug 26;93:117460. PMID:37660465 doi:10.1016/j.bmc.2023.117460
|