8jzx
From Proteopedia
SLC15A4 inhibitor complex
Structural highlights
FunctionS15A4_HUMAN Proton-coupled amino-acid transporter that mediates the transmembrane transport of L-histidine and some di- and tripeptides from inside the lysosome to the cytosol, and plays a key role in innate immune response (PubMed:16289537, PubMed:25238095, PubMed:29224352). Able to transport a variety of di- and tripeptides, including carnosine and some peptidoglycans (PubMed:29224352, PubMed:31073693). Transporter activity is pH-dependent and maximized in the acidic lysosomal environment (By similarity). Involved in the detection of microbial pathogens by toll-like receptors (TLRs) and NOD-like receptors (NLRs), probably by mediating transport of bacterial peptidoglycans across the endolysosomal membrane: catalyzes the transport of certain bacterial peptidoglycans, such as muramyl dipeptide (MDP), the NOD2 ligand, and L-alanyl-gamma-D-glutamyl-meso-2,6-diaminoheptanedioate (tri-DAP), the NOD1 ligand (PubMed:25238095, PubMed:29224352). Required for TLR7, TLR8 and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) (PubMed:25238095). Independently of its transporter activity, also promotes the recruitment of innate immune adapter TASL to endolysosome downstream of TLR7, TLR8 and TLR9: TASL recruitment leads to the specific recruitment and activation of IRF5 (PubMed:32433612). Required for isotype class switch recombination to IgG2c isotype in response to TLR9 stimulation (By similarity). Required for mast cell secretory-granule homeostasis by limiting mast cell functions and inflammatory responses (By similarity).[UniProtKB:O09014][UniProtKB:Q91W98][1] [2] [3] [4] [5] Publication Abstract from PubMedDysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease. A conformation-locking inhibitor of SLC15A4 with TASL proteostatic anti-inflammatory activity.,Boeszoermenyi A, Bernaleau L, Chen X, Kartnig F, Xie M, Zhang H, Zhang S, Delacretaz M, Koren A, Hopp AK, Dvorak V, Kubicek S, Aletaha D, Yang M, Rebsamen M, Heinz LX, Superti-Furga G Nat Commun. 2023 Oct 20;14(1):6626. doi: 10.1038/s41467-023-42070-3. PMID:37863876[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|