8khu
From Proteopedia
Hepatitis B virus core protein Y132A mutant in complex with THPP derivatives 48
Structural highlights
FunctionCAPSD_HBVD1 Self assembles to form an icosahedral capsid. Most capsid appear to be large particles with a icosahedral symmetry of T=4 and consist of 240 copies of capsid protein, though a fraction forms smaller T=3 particles consisting of 180 capsid proteins. Entering capsid are transported along microtubules to the nucleus. Phosphorylation of the capsid is thought to induce exposure of nuclear localization signal in the C-terminal portion of the capsid protein that allows binding to the nuclear pore complex via the importin (karyopherin-) alpha and beta. Capsids are imported in intact form through the nuclear pore into the nuclear basket, where it probably binds NUP153. Only capsids that contain the mature viral genome can release the viral DNA and capsid protein into the nucleoplasm. Immature capsids get stucked in the basket. Capsids encapsulate the pre-genomic RNA and the P protein. Pre-genomic RNA is reverse transcribed into DNA while the capsid is still in the cytoplasm. The capsid can then either be directed to the nucleus, providing more genome for transcription, or bud through the endoplasmic reticulum to provide new virions (By similarity).[1] Encapsidates hepatitis delta genome (By similarity).[2] Publication Abstract from PubMedHepatitis B Virus (HBV) core protein allosteric modulators (CpAMs) are an attractive class of potential anti-HBV therapeutic agents. Here we describe the efforts toward the discovery of a series of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (THPP) compounds as HBV CpAMs that effectively inhibit a broad range of nucleos(t)ide-resistant HBV variants. The lead compound 45 demonstrated inhibition of HBV DNA viral load in a HBV AAV mouse model by oral administration. Discovery of 4,5,6,7-Tetrahydropyrazolo[1.5-a]pyrizine Derivatives as Core Protein Allosteric Modulators (CpAMs) for the Inhibition of Hepatitis B Virus.,Kou B, Zhang Z, Han X, Zhou Z, Xu Z, Zhou X, Shen F, Zhou Y, Tian X, Yang G, Young JAT, Qiu H, Ottaviani G, Mayweg A, Zhu W, Shen HC, Liu H, Hu T J Med Chem. 2023 Oct 6. doi: 10.1021/acs.jmedchem.3c01145. PMID:37801325[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|