8pon
From Proteopedia
TEAD2 in complex with an inhibitor
Structural highlights
FunctionTEAD2_HUMAN Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif.[1] [2] Publication Abstract from PubMedThe Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells. Development of LM-41 and AF-2112, two flufenamic acid-derived TEAD inhibitors obtained through the replacement of the trifluoromethyl group by aryl rings.,Fnaiche A, Melin L, Suarez NG, Paquin A, Vu V, Li F, Allali-Hassani A, Bolotokova A, Allemand F, Gelin M, Cotelle P, Woo S, LaPlante SR, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A Bioorg Med Chem Lett. 2023 Oct 15;95:129488. doi: 10.1016/j.bmcl.2023.129488. , Epub 2023 Sep 27. PMID:37770003[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|