9bc8
From Proteopedia
Cargo-loaded Myxococcus xanthus EncA encapsulin engineered pore mutant with T=4 icosahedral symmetry
Structural highlights
FunctionENCAP_MYXXD Shell component of a type 1, iron-storage encapsulin nanocompartment. Encapsulin nanocompartments are 32 nm in diameter with an iron- and phosphorus-rich core (4Fe:1P) about 24 nm in diameter. Upon expression in E.coli most particles are 32 nm, 20% are 18 nm. The core is filled with an average of 14 dense granules, 5-6 nm in diameter that are not evenly distributed. Each nanocompartment is estimated to hold 30,000-35,000 Fe atoms (PubMed:25024436, PubMed:31194509). The minor proteins EncB, EncC and EncD probably lie against the interior face of the nanocompartment (Probable).[1] [2] [3] Publication Abstract from PubMedEnzyme nanoreactors are nanoscale compartments consisting of encapsulated enzymes and a selectively permeable barrier. Sequestration and colocalization of enzymes can increase catalytic activity, stability, and longevity, highly desirable features for many biotechnological and biomedical applications of enzyme catalysts. One promising strategy to construct enzyme nanoreactors is to repurpose protein nanocages found in nature. However, protein-based enzyme nanoreactors often exhibit decreased catalytic activity, partially caused by a mismatch of protein shell selectivity and the substrate requirements of encapsulated enzymes. No broadly applicable and modular protein-based nanoreactor platform is currently available. Here, we introduce a pore-engineered universal enzyme nanoreactor platform based on encapsulins-microbial self-assembling protein nanocompartments with programmable and selective enzyme packaging capabilities. We structurally characterize our protein shell designs via cryo-electron microscopy and highlight their polymorphic nature. Through fluorescence polarization assays, we show their improved molecular flux behavior and highlight their expanded substrate range via a number of proof-of-concept enzyme nanoreactor designs. This work lays the foundation for utilizing our encapsulin-based nanoreactor platform for diverse future biotechnological and biomedical applications. Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance.,Kwon S, Andreas MP, Giessen TW ACS Nano. 2024 Sep 17;18(37):25740-25753. doi: 10.1021/acsnano.4c08186. Epub 2024 , Sep 3. PMID:39226211[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|