9bip
From Proteopedia
Human proton sensing receptor GPR4 in complex with miniGs
Structural highlights
FunctionGBB1_HUMAN Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.[1] Publication Abstract from PubMedThree proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating approximately 9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity. Molecular basis of proton sensing by G protein-coupled receptors.,Howard MK, Hoppe N, Huang XP, Mitrovic D, Billesbolle CB, Macdonald CB, Mehrotra E, Rockefeller Grimes P, Trinidad DD, Delemotte L, English JG, Coyote-Maestas W, Manglik A Cell. 2024 Dec 26:S0092-8674(24)01373-4. doi: 10.1016/j.cell.2024.11.036. PMID:39753132[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|