9i63
From Proteopedia
Synthetic Human Saposin D glycoprotein
Structural highlights
DiseaseSAP_HUMAN Defects in PSAP are the cause of combined saposin deficiency (CSAPD) [MIM:611721; also known as prosaposin deficiency. CSAPD is due to absence of all saposins, leading to a fatal storage disorder with hepatosplenomegaly and severe neurological involvement.[1] [2] Defects in PSAP saposin-B region are the cause of leukodystrophy metachromatic due to saposin-B deficiency (MLD-SAPB) [MIM:249900. MLD-SAPB is an atypical form of metachromatic leukodystrophy. It is characterized by tissue accumulation of cerebroside-3-sulfate, demyelination, periventricular white matter abnormalities, peripheral neuropathy. Additional neurological features include dysarthria, ataxic gait, psychomotr regression, seizures, cognitive decline and spastic quadriparesis. Defects in PSAP saposin-C region are the cause of atypical Gaucher disease (AGD) [MIM:610539. Affected individuals have marked glucosylceramide accumulation in the spleen without having a deficiency of glucosylceramide-beta glucosidase characteristic of classic Gaucher disease, a lysosomal storage disorder.[3] [4] Defects in PSAP saposin-A region are the cause of atypical Krabbe disease (AKRD) [MIM:611722. AKRD is a disorder of galactosylceramide metabolism. AKRD features include progressive encephalopathy and abnormal myelination in the cerebral white matter resembling Krabbe disease.[5] Note=Defects in PSAP saposin-D region are found in a variant of Tay-Sachs disease (GM2-gangliosidosis). FunctionSAP_HUMAN The lysosomal degradation of sphingolipids takes place by the sequential action of specific hydrolases. Some of these enzymes require specific low-molecular mass, non-enzymic proteins: the sphingolipids activator proteins (coproteins). Saposin-A and saposin-C stimulate the hydrolysis of glucosylceramide by beta-glucosylceramidase (EC 3.2.1.45) and galactosylceramide by beta-galactosylceramidase (EC 3.2.1.46). Saposin-C apparently acts by combining with the enzyme and acidic lipid to form an activated complex, rather than by solubilizing the substrate. Saposin-B stimulates the hydrolysis of galacto-cerebroside sulfate by arylsulfatase A (EC 3.1.6.8), GM1 gangliosides by beta-galactosidase (EC 3.2.1.23) and globotriaosylceramide by alpha-galactosidase A (EC 3.2.1.22). Saposin-B forms a solubilizing complex with the substrates of the sphingolipid hydrolases. Saposin-D is a specific sphingomyelin phosphodiesterase activator (EC 3.1.4.12). Publication Abstract from PubMedThe main glycoforms of the hydrophobic lysosomal glycoprotein saposin D (SapD) were synthesized by native chemical ligation. An approach for the challenging solid-phase synthesis of the fragments was developed. Three SapD glycoforms were obtained following a general and robust refolding and purification protocol. A crystal structure of one glycoform confirmed its native structure and disulfide pattern. Functional assays revealed that the lipid-binding properties of three SapD glycoforms are highly affected by the single sugar moiety of SapD showing a dependency of the size and the type of N-glycan. Synthetic Glycoforms Reveal Carbohydrate-Dependent Bioactivity of Human Saposin D.,Graf CGF, Schulz C, Schmalzlein M, Heinlein C, Monnich M, Perkams L, Puttner M, Boos I, Hessefort M, Lombana Sanchez JN, Weyand M, Steegborn C, Breiden B, Ross K, Schwarzmann G, Sandhoff K, Unverzagt C Angew Chem Int Ed Engl. 2017 May 2;56(19):5252-5257. doi: 10.1002/anie.201701362. , Epub 2017 Apr 5. PMID:28378443[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|