9jpi
From Proteopedia
The complex structure of DHAD with aspterric acid (AA).
Structural highlights
FunctionILVD_ARATH Catalyzes the dehydration of 2,3-dihydroxy-3-isovalerate or 2,3-dihydroxy-3-methylvalerate to the 2-oxo acids 3-methyl-2-oxobutanoate (3MOB) or 3-methyl-2-oxopentanoate (3MOP).[1] Publication Abstract from PubMedDihydroxy acid dehydratase (DHAD) is the third enzyme in the plant branched-chain amino acid biosynthetic pathway and the target for commercial herbicide development. We have previously reported the discovery of fungal natural product aspterric acid (AA) as a submicromolar inhibitor of DHAD through self-resistance gene directed genome mining. Here, we reveal the mechanism of AA inhibition on DHAD and the self-resistance mechanism of AstD, which is encoded by the self-resistance gene astD. As a competitive inhibitor, the hydroxycarboxylic acid group of AA mimics the binding of the natural substrate of DHAD, while the hydrophobic moiety of AA occupies the substrate entrance cavity. Compared to DHAD, AstD has a relatively narrow substrate channel to prevent AA from binding. Several mutants of DHAD were generated and assayed to validate the self-resistance mechanism and to confer Arabidopsis thaliana DHAD with AA resistance. These results will lead to the engineering of new type of herbicides targeting DHAD and provide direction for the ecological construction of herbicide-resistant crops. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance.,Zang X, Bat-Erdene U, Huang W, Wu Z, Jacobsen SE, Tang Y, Zhou J Biodes Res. 2024 Nov 1;6:0046. doi: 10.34133/bdr.0046. eCollection 2024. PMID:39494391[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|