9q1n
From Proteopedia
Crystal structure of human TEAD2-Yap binding domain covalently bound to an allosteric regulator
Structural highlights
FunctionTEAD2_HUMAN Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif.[1] [2] Publication Abstract from PubMedTranscriptional enhanced associate domain transcription factors (TEAD1 to TEAD4) bind to transcriptional coactivator Yes-Associated Protein (YAP1) or its paralog transcriptional coactivator with PDZ-binding motif (TAZ) to regulate Hippo pathway target genes. The Hippo pathway is a conserved signaling pathway that regulates organ size and cell fate by controlling cell proliferation and apoptosis. Here we report small acrylamide molecules that form a covalent bond with a conserved cysteine at the TEAD palmitate pocket. Binding studies showed profound stabilization of TEADs by the small molecules, and cocrystal structures reveal that the compounds mimic the binding mode of palmitate. The small molecules achieved submicromolar binding constants and subhour reaction half-lives for all four TEADs. In mammalian cells, the compounds stabilize the TEAD*YAP1 interaction yet inhibit the TEAD transcription factor activity. Unexpectedly, several compounds degraded TEAD and YAP1 proteins and inhibited cancer cell viability. This work suggests that degradation of TEAD and YAP1 may amplify the antitumor effects of small molecules targeting the TEAD palmitate pocket, with implications for other cancer targets featuring allosteric lipid-binding sites. Small-Molecule Covalent Stabilization and Inhibition of the TEAD.YAP1 Transcription Factor in Cancer Cells.,Yeh IJ, Bum-Erdene K, Ghozayel MK, Gonzalez-Gutierrez G, Meroueh SO ACS Chem Biol. 2025 Aug 27. doi: 10.1021/acschembio.5c00283. PMID:40864874[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|