Structural highlights
Function
SYUA_MOUSE Neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release (By similarity). Participates as a monomer in synaptic vesicle exocytosis by enhancing vesicle priming, fusion and dilation of exocytotic fusion pores (By similarity). Mechanistically, acts by increasing local Ca(2+) release from microdomains which is essential for the enhancement of ATP-induced exocytosis (By similarity). Acts also as a molecular chaperone in its multimeric membrane-bound state, assisting in the folding of synaptic fusion components called SNAREs (Soluble NSF Attachment Protein REceptors) at presynaptic plasma membrane in conjunction with cysteine string protein-alpha/DNAJC5 (PubMed:20798282, PubMed:25246573). This chaperone activity is important to sustain normal SNARE-complex assembly during aging (By similarity). Also plays a role in the regulation of the dopamine neurotransmission by associating with the dopamine transporter (DAT1) and thereby modulating its activity (By similarity).[UniProtKB:P37840][1] [2]
References
- ↑ Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010 Sep 24;329(5999):1663-7. doi: 10.1126/science.1195227. Epub 2010, Aug 26. PMID:20798282 doi:http://dx.doi.org/10.1126/science.1195227
- ↑ Burré J, Sharma M, Südhof TC. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83. PMID:25246573 doi:10.1073/pnas.1416598111