Structural highlights
Function
RL4_RABIT Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:26245381, PubMed:27863242).[1] [2]
Publication Abstract from PubMed
GTP-binding protein 1 (GTPBP1) is a widespread translational GTPase closely related to elongation factor eEF1A. The loss of GTPBP1 leads to neurodevelopmental and neurodegenerative disorders in animals. Although linked to translation and quality control mechanisms, GTPBP1 molecular functions remain largely obscure. Similarly to eEF1A, GTPBP1 delivers aminoacyl-tRNA to the ribosome, but the ensuing GTPBP1-mediated elongation is slow. Here, using cryo-EM of mammalian 80S ribosomal complexes bound to GTPBP1 and aa-tRNA with GTP or the non-hydrolysable analog GDPCP, we show that the distinct GTPBP1 architecture and interactions with tRNA underlie slow GTPBP1 dissociation after GTP hydrolysis, resulting in delayed tRNA accommodation. Slow dissociation correlates with an extended proofreading stage and higher accuracy of GTPBP1-mediated decoding, potentially allowing GTPBP1 to elicit its putative quality control functions. GTPBP1 visualization provides the foundation for mapping and elucidating GTPBP1 mutations associated with human diseases.
Structural mechanism of mRNA decoding by mammalian GTPase GTPBP1.,Susorov D, Miscicka A, Golovenko D, Loveland AB, Zinoviev A, Pestova TV, Korostelev AA Nat Commun. 2025 Dec 5. doi: 10.1038/s41467-025-66833-2. PMID:41350250[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Susorov D, Miścicka A, Golovenko D, Loveland AB, Zinoviev A, Pestova TV, Korostelev AA. Structural mechanism of mRNA decoding by mammalian GTPase GTPBP1. Nat Commun. 2025 Dec 5. PMID:41350250 doi:10.1038/s41467-025-66833-2