Sandbox Reserved 1358

From Proteopedia

Jump to: navigation, search
This Sandbox is Reserved from January through July 31, 2018 for use in the course HLSC322: Principles of Genetics and Genomics taught by Genevieve Houston-Ludlam at the University of Maryland, College Park, USA. This reservation includes Sandbox Reserved 1311 through Sandbox Reserved 1430.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

GLUT3 / SLC2A3

Structure of DNA

Drag the structure with the mouse to rotate

References

Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y. S., Byers, M. G., Shows, T. B., & Bell, G. I. (n.d.). Cell Glucose Transport and Glucose Handling During Fetal and Neonatal Development. Retrieved from Journal of Biological Chemistry website: http://www.jbc.org/content/263/30/15245.short

Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I., & Gong, C.-X. (2008). Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Letters, 582(2), 359–364. http://doi.org/10.1016/j.febslet.2007.12.035

Simmons, R. A. (2017). Cell Glucose Transport and Glucose Handling During Fetal and Neonatal Development. Retrieved from Science Direct website: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glut3

Simpson, I. A., Dwyer, D., Malide, D., Moley, K. H., Travis, A., & Vannucci, S. J. (2008). The facilitative glucose transporter GLUT3: 20 years of distinction. American Journal of Physiology - Endocrinology and Metabolism, 295(2), E242–E253. http://doi.org/10.1152/ajpendo.90388.2008

Personal tools