Urease
From Proteopedia
Line 1: | Line 1: | ||
<StructureSection load='' size='450' side='right' scene='Journal:JBIC:20/Cv/2' caption=''> | <StructureSection load='' size='450' side='right' scene='Journal:JBIC:20/Cv/2' caption=''> | ||
__NOTOC__ | __NOTOC__ | ||
+ | |||
Urease is a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi <ref name="urease">PMID: PMC2443974 </ref>. | Urease is a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi <ref name="urease">PMID: PMC2443974 </ref>. | ||
Jack bean urease was the first enzyme to be crystallized, accomplished by James. B. Sumner in 1926, one for which he was awarded Nobel Prize in chemistry in 1946 <ref name="jb">http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc </ref>. Like urease, its substrate urea is also of major historical significance since it was the first organic compound to be synthesized in 1828. Urea is a major nitrogenous waste product of biological actions. In general, urea is short-lived and rapidly metabolized by microbial activities. Urease catalyzes the hydrolysis of urea to form ammonia and carbamate. The compound spontaneously hydrolyzes at physiological pH to form carbonic acid and a second molecule of ammonia <ref name="urea">Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.</ref>. | Jack bean urease was the first enzyme to be crystallized, accomplished by James. B. Sumner in 1926, one for which he was awarded Nobel Prize in chemistry in 1946 <ref name="jb">http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc </ref>. Like urease, its substrate urea is also of major historical significance since it was the first organic compound to be synthesized in 1828. Urea is a major nitrogenous waste product of biological actions. In general, urea is short-lived and rapidly metabolized by microbial activities. Urease catalyzes the hydrolysis of urea to form ammonia and carbamate. The compound spontaneously hydrolyzes at physiological pH to form carbonic acid and a second molecule of ammonia <ref name="urea">Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.</ref>. | ||
Line 8: | Line 9: | ||
The reaction occurs as follows: | The reaction occurs as follows: | ||
(NH<sub>2</sub>)<sub>2</sub>CO + H<sub>2</sub>O → CO<sub>2</sub> + 2NH<sub>3</sub> | (NH<sub>2</sub>)<sub>2</sub>CO + H<sub>2</sub>O → CO<sub>2</sub> + 2NH<sub>3</sub> | ||
- | |||
- | __TOC__ | ||
- | |||
=Characteristics<small><ref name="characteristics">http://en.wikipedia.org/wiki/Urease </ref></small>= | =Characteristics<small><ref name="characteristics">http://en.wikipedia.org/wiki/Urease </ref></small>= | ||
[[Image:Urease-1E9Z.jpg|left|260px]] | [[Image:Urease-1E9Z.jpg|left|260px]] |
Revision as of 09:01, 13 November 2013
|
3D structures of urease
Updated on 13-November-2013
2kau, 1kra, 1fwj, 1ejx, 1ejw – KaUA α+β+γ chains – Klebsiella aerogenes
1ef2 - KaUA α+β+γ chains Mn substituted
1krb, 1krc, 1fwa, 1fwb, 1fwc, 1fwd, 1fwf , 1fwg, 1fwh, 1fwi – KaUA α (mutant) +β (mutant) +γ (mutant) chains
1a5k, 1a5l, 1a5m, 1ejr, 1ejs, 1ejt, 1eju, 1ejv - KaUA α+β+γ (mutant) chains
2ubp - BpUA α+β+γ chains – Bacillus pasteurii
1e9z - HpUA α+β chains – Helicobacter pylori
3qga, 3qgk - UA β/γ chains Fe containing – Helicobacter mustelae
2fvh - UA γ chain – Mycobacterium tuberculosis
3la4 – UA – horse bean
4epb, 4epd, 4epe - UA α+β+γ chains – Enterobacter aerogenes
4ac7 - UA α+β+γ chains – Sporosarcina pasteurii
Urease binary complex
1a5n, 1a5o - KaUA α+β+γ (mutant) chains + formate
1fwe – KaUA α (mutant) +β (mutant) +γ (mutant) chains + acetohydroxamic acid
1ubp - BpUA α+β+γ chains + mercaptoethanol
3ubp - BpUA α+β+γ chains + diamidophosphate
4ubp - BpUA α+β+γ chains + acetohydroxamic acid
1ie7 - BpUA α+β+γ chains + phosphate
1s3t - BpUA α+β+γ chains + borate
1e9y - HpUA α+β chains + acetohydroxamic acid
Additional Resources
For additional information on Urinary Tract Infection, See: 1tr7
For additional information on Helicobacter Pylori, See: 1e9z
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 PMID: PMC2443974
- ↑ http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc
- ↑ Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.
- ↑ Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480.
- ↑ Moncrief, M. C. & Hausinger, R. P. (1996). Nickel incorporation into urease. In Mechanisms of Metallo- center Assembly (Hausinger, R. P., Eichhorn, G. L. & Marzilli, L. G., eds), pp. 151–171, Elsevier Press, New York, NY.
- ↑ 6.0 6.1 Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science, 284, 1328–1333.
- ↑ Polacco, J. C. & Holland, M. A. (1993). Roles of urease in plant cells. Int. Rev. Cytol. 145, 65–103.
- ↑ 8.0 8.1 http://en.wikipedia.org/wiki/Urease
- ↑ 9.0 9.1 9.2 Mobley, H. L. T., Island, M. D. & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480.
- ↑ http://www.cell.com/structure/abstract/S0969-2126(99)80026-4#.
- ↑ Cicmanec JF, Helmers SL, Evans AT. Office practice survey of urease positive bacterial pathogens causing urinary tract infections. Urology. 1980 Sep;16(3):274-6. PMID:6999699
- ↑ Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480.
- ↑ Becker-Ritt, A. B., Martinelli, A. H. S., Mitidieri, S., Feder, V., Wassermann, G. E., Santi, L. et al. (2007). Antifungal activity of plant and bacterial ureases. Toxicon, 50, 971–983.
- ↑ 14.0 14.1 Follmer, C., Real-Guerra, R., Wassermann, G. E., Olivera-Severo, D. & Carlini, C. R. (2004). Jackbean, soybean and Bacillus pasteurii ureases—biological effects unrelated to ureolytic activity. Eur. J. Biochem. 271, 1357–1363.
- ↑ Karplus, P. A., Pearson, M. A. & Hausinger, R. P. (1997). 70 years of crystalline urease: what have we learnt? Acc. Chem. Res. 30, 330–337.
- ↑ Benini, S., Rypneiwski, W. R., Wilson, K. S., Meletti, S., Ciurli, S. & Mangani, S. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7, 205–216.
- ↑ 17.0 17.1 http://tonga.usip.edu/jsnow/chem348/recitation8.pdf
- ↑ http://emedicine.medscape.com/article/1174503-overview
- ↑ http://www.nucdf.org/ucd_treatment.htm
- ↑ Benini S, Kosikowska P, Cianci M, Mazzei L, Vara AG, Berlicki L, Ciurli S. The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. J Biol Inorg Chem. 2013 Mar;18(3):391-9. doi: 10.1007/s00775-013-0983-7. Epub, 2013 Feb 15. PMID:23412551 doi:10.1007/s00775-013-0983-7
- ↑ Kcx - Lysine NZ-carboxylic acid
- ↑ Zambelli B, Banaszak K, Merloni A, Kiliszek A, Rypniewski W, Ciurli S. Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: a calorimetric and crystallographic study. J Biol Inorg Chem. 2013 Dec;18(8):1005-17. doi: 10.1007/s00775-013-1049-6. Epub, 2013 Oct 15. PMID:24126709 doi:http://dx.doi.org/10.1007/s00775-013-1049-6
- ↑ Ligabue-Braun R, Real-Guerra R, Carlini CR, Verli H. Evidence-based docking of the urease activation complex. J Biomol Struct Dyn. 2012 Sep 10. PMID:22962938 doi:10.1080/07391102.2012.713782
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, Andrea Graydon, Alexander Berchansky, David Canner, OCA