Urease

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
__NOTOC__
__NOTOC__
-
Urease is a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi <ref name="urease">PMID: PMC2443974 </ref>.
+
'''Urease''' is a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi <ref name="urease">PMID: PMC2443974 </ref>.
Jack bean urease was the first enzyme to be crystallized, accomplished by James. B. Sumner in 1926, one for which he was awarded Nobel Prize in chemistry in 1946 <ref name="jb">http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc </ref>. Like urease, its substrate urea is also of major historical significance since it was the first organic compound to be synthesized in 1828. Urea is a major nitrogenous waste product of biological actions. In general, urea is short-lived and rapidly metabolized by microbial activities. Urease catalyzes the hydrolysis of urea to form ammonia and carbamate. The compound spontaneously hydrolyzes at physiological pH to form carbonic acid and a second molecule of ammonia <ref name="urea">Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.</ref>.
Jack bean urease was the first enzyme to be crystallized, accomplished by James. B. Sumner in 1926, one for which he was awarded Nobel Prize in chemistry in 1946 <ref name="jb">http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc </ref>. Like urease, its substrate urea is also of major historical significance since it was the first organic compound to be synthesized in 1828. Urea is a major nitrogenous waste product of biological actions. In general, urea is short-lived and rapidly metabolized by microbial activities. Urease catalyzes the hydrolysis of urea to form ammonia and carbamate. The compound spontaneously hydrolyzes at physiological pH to form carbonic acid and a second molecule of ammonia <ref name="urea">Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.</ref>.
Ureases are among the few enzymes that require nickel for activity. It is known that binding of nickel to urease is very specific and tight and the removal of metal ions can be achieved only by harsh treatment with denaturants or acids,<ref name="nickel">Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480. </ref> which is not the case in most other metalloenzymes. In vivo incorporation of nickel in both bacterial and plant ureases requires a set of accessory proteins that appear to act as urease-specific chaperones <ref name="nickel2">Moncrief, M. C. & Hausinger, R. P. (1996). Nickel incorporation into urease. In Mechanisms of Metallo- center Assembly (Hausinger, R. P., Eichhorn, G. L. & Marzilli, L. G., eds), pp. 151–171, Elsevier Press, New York, NY. </ref>.
Ureases are among the few enzymes that require nickel for activity. It is known that binding of nickel to urease is very specific and tight and the removal of metal ions can be achieved only by harsh treatment with denaturants or acids,<ref name="nickel">Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480. </ref> which is not the case in most other metalloenzymes. In vivo incorporation of nickel in both bacterial and plant ureases requires a set of accessory proteins that appear to act as urease-specific chaperones <ref name="nickel2">Moncrief, M. C. & Hausinger, R. P. (1996). Nickel incorporation into urease. In Mechanisms of Metallo- center Assembly (Hausinger, R. P., Eichhorn, G. L. & Marzilli, L. G., eds), pp. 151–171, Elsevier Press, New York, NY. </ref>.

Revision as of 11:52, 2 January 2014

Drag the structure with the mouse to rotate

3D structures of urease

Updated on 02-January-2014

2kau, 1kra, 1fwj, 1ejx, 1ejw – KaUA α+β+γ chains – Klebsiella aerogenes
1ef2 - KaUA α+β+γ chains Mn substituted
1krb, 1krc, 1fwa, 1fwb, 1fwc, 1fwd, 1fwf , 1fwg, 1fwh, 1fwi – KaUA α (mutant) +β (mutant) +γ (mutant) chains
1a5k, 1a5l, 1a5m, 1ejr, 1ejs, 1ejt, 1eju, 1ejv - KaUA α+β+γ (mutant) chains
2ubp - BpUA α+β+γ chains – Bacillus pasteurii
1e9z - HpUA α+β chains – Helicobacter pylori
3qga, 3qgk - UA β/γ chains Fe containing – Helicobacter mustelae
2fvh - UA γ chain – Mycobacterium tuberculosis
3la4 – UA – horse bean
4epb, 4epd, 4epe - UA α+β+γ chains – Enterobacter aerogenes
4ac7 - UA α+β+γ chains – Sporosarcina pasteurii

Urease binary complex

1a5n, 1a5o - KaUA α+β+γ (mutant) chains + formate
1fwe – KaUA α (mutant) +β (mutant) +γ (mutant) chains + acetohydroxamic acid
1ubp - BpUA α+β+γ chains + mercaptoethanol
3ubp - BpUA α+β+γ chains + diamidophosphate
4ubp - BpUA α+β+γ chains + acetohydroxamic acid
1ie7 - BpUA α+β+γ chains + phosphate
1s3t - BpUA α+β+γ chains + borate
1e9y - HpUA α+β chains + acetohydroxamic acid

Additional Resources

For additional information on Urinary Tract Infection, See: 1tr7
For additional information on Helicobacter Pylori, See: 1e9z

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 PMID: PMC2443974
  2. http://www.jbc.org/content/277/35/e23.full?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&searchid=1130442887043_7599&stored_search=&FIRSTINDEX=60&tocsectionid=Classics&sortspec=PUBDATE_SORTDATE+desc
  3. Andrews, R. K., Blakeley, R. L. & Zerner, B. (1984). Urea and urease. Adv. Inorg. Biochem. 6, 245–283.
  4. Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480.
  5. Moncrief, M. C. & Hausinger, R. P. (1996). Nickel incorporation into urease. In Mechanisms of Metallo- center Assembly (Hausinger, R. P., Eichhorn, G. L. & Marzilli, L. G., eds), pp. 151–171, Elsevier Press, New York, NY.
  6. 6.0 6.1 Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science, 284, 1328–1333.
  7. Polacco, J. C. & Holland, M. A. (1993). Roles of urease in plant cells. Int. Rev. Cytol. 145, 65–103.
  8. 8.0 8.1 http://en.wikipedia.org/wiki/Urease
  9. 9.0 9.1 9.2 Mobley, H. L. T., Island, M. D. & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480.
  10. http://www.cell.com/structure/abstract/S0969-2126(99)80026-4#.
  11. Cicmanec JF, Helmers SL, Evans AT. Office practice survey of urease positive bacterial pathogens causing urinary tract infections. Urology. 1980 Sep;16(3):274-6. PMID:6999699
  12. Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L. & Zerner, B. (1980). Jack been urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can. J. Biochem. 58, 474–480.
  13. Becker-Ritt, A. B., Martinelli, A. H. S., Mitidieri, S., Feder, V., Wassermann, G. E., Santi, L. et al. (2007). Antifungal activity of plant and bacterial ureases. Toxicon, 50, 971–983.
  14. 14.0 14.1 Follmer, C., Real-Guerra, R., Wassermann, G. E., Olivera-Severo, D. & Carlini, C. R. (2004). Jackbean, soybean and Bacillus pasteurii ureases—biological effects unrelated to ureolytic activity. Eur. J. Biochem. 271, 1357–1363.
  15. Karplus, P. A., Pearson, M. A. & Hausinger, R. P. (1997). 70 years of crystalline urease: what have we learnt? Acc. Chem. Res. 30, 330–337.
  16. Benini, S., Rypneiwski, W. R., Wilson, K. S., Meletti, S., Ciurli, S. & Mangani, S. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7, 205–216.
  17. 17.0 17.1 http://tonga.usip.edu/jsnow/chem348/recitation8.pdf
  18. http://emedicine.medscape.com/article/1174503-overview
  19. http://www.nucdf.org/ucd_treatment.htm
  20. Benini S, Kosikowska P, Cianci M, Mazzei L, Vara AG, Berlicki L, Ciurli S. The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. J Biol Inorg Chem. 2013 Mar;18(3):391-9. doi: 10.1007/s00775-013-0983-7. Epub, 2013 Feb 15. PMID:23412551 doi:10.1007/s00775-013-0983-7
  21. Kcx - Lysine NZ-carboxylic acid
  22. Zambelli B, Banaszak K, Merloni A, Kiliszek A, Rypniewski W, Ciurli S. Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: a calorimetric and crystallographic study. J Biol Inorg Chem. 2013 Dec;18(8):1005-17. doi: 10.1007/s00775-013-1049-6. Epub, 2013 Oct 15. PMID:24126709 doi:http://dx.doi.org/10.1007/s00775-013-1049-6
  23. Ligabue-Braun R, Real-Guerra R, Carlini CR, Verli H. Evidence-based docking of the urease activation complex. J Biomol Struct Dyn. 2012 Sep 10. PMID:22962938 doi:10.1080/07391102.2012.713782

Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Andrea Graydon, Alexander Berchansky, David Canner, OCA

Personal tools