Argonaute
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | <StructureSection load='' size='350' side='right' scene=' | + | <StructureSection load='4ola' size='350' side='right' scene='51/512703/Cv/1' caption='X-ray structure of the entire human Argonaute2 protein complex with RNA (red) (PDB [[4ola]]) at 2.3Å resolution'> |
==Function== | ==Function== | ||
The '''Argonaute''' protein is a component of the RISC complex, central to the [[RNA_Interference|RNA-induced silencing]] in eukaryotic organisms <ref name='ref1'>pmid 22539551</ref>. It is found in all higher eukaryotes and it plays an important role in a variety of processes as diverse as embryonic development, cell diferentiation and transposon silencing. These proteins are evolutionarily conserved and can be divided in three subfamilies: Ago, Piwi and Wago. The first are ubiquitously expressed and interact with siRNAs or miRNAs to participate in post-transcriptional gene silencing, both by destabilizing mRNA or by repressing the translation event. Piwi proteins are generally restricted to the germ line and associate piRNAs to mediate silencing of mobile genetic elements <ref name='ref2'>pmid 18304383</ref>. The third and final subclass, Wago, are worm specific. For more details see [[RNA Interference]]. | The '''Argonaute''' protein is a component of the RISC complex, central to the [[RNA_Interference|RNA-induced silencing]] in eukaryotic organisms <ref name='ref1'>pmid 22539551</ref>. It is found in all higher eukaryotes and it plays an important role in a variety of processes as diverse as embryonic development, cell diferentiation and transposon silencing. These proteins are evolutionarily conserved and can be divided in three subfamilies: Ago, Piwi and Wago. The first are ubiquitously expressed and interact with siRNAs or miRNAs to participate in post-transcriptional gene silencing, both by destabilizing mRNA or by repressing the translation event. Piwi proteins are generally restricted to the germ line and associate piRNAs to mediate silencing of mobile genetic elements <ref name='ref2'>pmid 18304383</ref>. The third and final subclass, Wago, are worm specific. For more details see [[RNA Interference]]. |
Revision as of 11:39, 8 January 2018
|
3D Structures of argonaute
Updated on 08-January-2018
External Resources
Animation showing the function of Argonaute during RNA interference
References
- ↑ 1.0 1.1 1.2 Schirle NT, Macrae IJ. The Crystal Structure of Human Argonaute2. Science. 2012 Apr 26. PMID:22539551 doi:10.1126/science.1221551
- ↑ Hock J, Meister G. The Argonaute protein family. Genome Biol. 2008;9(2):210. Epub 2008 Feb 26. PMID:18304383 doi:10.1186/gb-2008-9-2-210
- ↑ Ma JB, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature. 2004 May 20;429(6989):318-22. PMID:15152257 doi:10.1038/nature02519
- ↑ Gu S, Jin L, Huang Y, Zhang F, Kay MA. Slicing-Independent RISC Activation Requires the Argonaute PAZ Domain. Curr Biol. 2012 Aug 21;22(16):1536-42. Epub 2012 Jul 12. PMID:22795694 doi:10.1016/j.cub.2012.06.040
- ↑ Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature. 2003 Nov 27;426(6965):465-9. Epub 2003 Nov 16. PMID:14615801 doi:10.1038/nature02123
- ↑ Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005 Apr;12(4):340-9. Epub 2005 Mar 30. PMID:15800637 doi:10.1038/nsmb918
- ↑ Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004 Sep 3;305(5689):1434-7. Epub 2004 Jul 29. PMID:15284453 doi:10.1126/science.1102514
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, João Rodrigues, Joel L. Sussman, Alexander Berchansky