Methylenetetrahydrofolate reductase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
== Function ==
== Function ==
-
Methylenetetrahydrofolate reductase (MTHFR) is a regulatory agent of one carbon folate metabolism. The enzyme catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate to be recycled back into the folate cycle, and for aiding folate uptake in the body. This reduction reaction requires the cofactor molecule flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) as the electron donor in the reaction. MTHFR has a unique folding structure. Its N-terminal is abundant in serine and acts as a phosphorylation site, its situated in close proximity to it's C-terminal S-adenosyl methionine (SAM) binding site. A linker joins the catalytic domain (N-terminal) to the regulatory domain (C-terminal) for interaction and increases the sensitivity to SAM binding and feedback properties.
+
Methylenetetrahydrofolate reductase (MTHFR) is a regulatory agent of one carbon folate metabolism. The enzyme catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate to be recycled back into the folate cycle, and for aiding folate uptake in the body. This reduction reaction requires the cofactor molecule flavin adenine dinucleotide (FAD) and the second substrate nicotinamide adenine dinucleotide phosphate (NADPH) as the electron donor in the reaction. MTHFR has a unique folding structure. Its N-terminal is abundant in serine and acts as a phosphorylation site, its situated in close proximity to it's C-terminal S-adenosyl methionine (SAM) binding site. A linker joins the catalytic domain (N-terminal) to the regulatory domain (C-terminal) for interaction and increases the sensitivity to SAM binding and feedback properties.

Revision as of 18:34, 5 April 2022

MTHFR

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools