1eg1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:1eg1.png|left|200px]]
+
==ENDOGLUCANASE I FROM TRICHODERMA REESEI==
 +
<StructureSection load='1eg1' size='340' side='right' caption='[[1eg1]], [[Resolution|resolution]] 3.60&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1eg1]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EG1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EG1 FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1eg1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1eg1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1eg1 RCSB], [http://www.ebi.ac.uk/pdbsum/1eg1 PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eg/1eg1_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose. Endoglucanase I (EG I) is the major endoglucanase produced by the cellulolytic fungus Trichoderma reesei, accounting for 5 to 10% of the total amount of cellulases produced by this organism. Together with EG I from Humicola insolens and T. reesei cellobiohydrolase I (CBH I), the enzyme is classified into family 7 of the glycosyl hydrolases, and it catalyses hydrolysis with a net retention of the anomeric configuration. The structure of the catalytic core domain (residues 1 to 371) of EG I from T. reesei has been determined at 3.6 A resolution by the molecular replacement method using the structures of T. reesei CBH I and H. insolens EG I as search models. By employing the 2-fold non-crystallographic symmetry (NCS), the structure was refined successfully, despite the limited resolution. The final model has an R-factor of 0.201 (Rfree 0.258). The structure of EG I reveals an extended, open substrate-binding cleft, rather than a tunnel as found in the homologous cellobiohydrolase CBH I. This confirms the earlier proposal that the tunnel-forming loops in CBH I have been deleted in EG I, which has resulted in an open active site in EG I, enabling it to function as an endoglucanase. Comparison of the structure of EG I with several related enzymes reveals structural similarities, and differences that relate to their biological function in degrading particular substrates. A possible structural explanation of the drastically different pH profiles of T. reesei and H. insolens EG I is proposed.
-
{{STRUCTURE_1eg1| PDB=1eg1 | SCENE= }}
+
The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes.,Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA J Mol Biol. 1997 Sep 26;272(3):383-97. PMID:9325098<ref>PMID:9325098</ref>
-
===ENDOGLUCANASE I FROM TRICHODERMA REESEI===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_9325098}}
+
-
 
+
-
==About this Structure==
+
-
[[1eg1]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EG1 OCA].
+
==See Also==
==See Also==
*[[Glucanase|Glucanase]]
*[[Glucanase|Glucanase]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:009325098</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Cellulase]]
[[Category: Cellulase]]
[[Category: Trichoderma reesei]]
[[Category: Trichoderma reesei]]

Revision as of 11:32, 24 September 2014

ENDOGLUCANASE I FROM TRICHODERMA REESEI

1eg1, resolution 3.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox