NF-Y Transcription Factor Sandbox
From Proteopedia
(→Protein Structure) |
(→Protein Structure) |
||
Line 10: | Line 10: | ||
NF-Y transcription factor consists of <scene name='56/566534/Nf-ya/1'>NF-YA</scene>, | NF-Y transcription factor consists of <scene name='56/566534/Nf-ya/1'>NF-YA</scene>, | ||
- | <scene name='56/566534/Nf-yb/1'>NF-YB</scene>, and <scene name='56/566534/Nf-yc/1'>NF-YC</scene> subunits. NF-YA subunit contains two α-helices, NF-YB subunit contains four α-helices and two β-sheets, and NF-YC subunit contains three α-helices and two β-sheets. The NF-YB and NF-YC subunits each contain a histone fold motif and form a NF-YB/NF-YC heterodimer<ref>PMID: 24030830</ref>. One of the two α helices of the NF-YA subunit, the N terminal <scene name='56/566534/Nf-ya_a1_helix/1'>A1 helix</scene>, interacts with NF-YB/NF-YC heterodimer resulting in a heterotrimer. The NF-Y heterotrimer is stabilized by ionic interactions, interactions between the backbone atoms of residues, and hydrophobic residues. Stabilizing ionic interactions occur between Asn239(NF-YA) with Asp109(NF-YC) and Asp112(NF-YC | + | <scene name='56/566534/Nf-yb/1'>NF-YB</scene>, and <scene name='56/566534/Nf-yc/1'>NF-YC</scene> subunits. NF-YA subunit contains two α-helices, NF-YB subunit contains four α-helices and two β-sheets, and NF-YC subunit contains three α-helices and two β-sheets. The NF-YB and NF-YC subunits each contain a histone fold motif and form a NF-YB/NF-YC heterodimer<ref>PMID: 24030830</ref>. One of the two α helices of the NF-YA subunit, the N terminal <scene name='56/566534/Nf-ya_a1_helix/1'>A1 helix</scene>, interacts with NF-YB/NF-YC heterodimer resulting in a heterotrimer. The NF-Y heterotrimer is stabilized by ionic interactions, interactions between the backbone atoms of residues, and hydrophobic residues. Stabilizing ionic interactions occur between Asn239(NF-YA) with Asp109(NF-YC) and Asp112(NF-YC. Residue backbone interactions occur between Leu123(NF-YB) with Phe113(NF-YC), Arg245(NF-YA) with Glu98(NF-YB) and Glu101(NF-YB), Arg249(NF-YA) with Glu90(NF-YB), and Arg250(NF-YA) with Asp116(NF-YC. Hydrophobic residues that contribute to the stabilization of the NF-Y heterotrimer are only located at NF-YA and NF-YB subunits at residues Ile246(NF-YA), Phe94(NF-YB), and Ile115(NF-YB). The NF-Y heterotrimer is also stabilized by the <scene name='56/566534/A1a2_linker/1'>A1A2 linker</scene> segment through intramolecular interactions of NF-YA residues on the main chain and side chain. Along with stabilization, the A1A2 linker provides the flexibility needed to direct the NF-YA chain toward DNA. |
== Interaction With DNA == | == Interaction With DNA == |
Revision as of 16:07, 6 November 2013
Contents |
Protein Function
NF-Y is a transcription factor (TF) binding helper, and is an important protein involved in histone posttranslational modifications (PTMs)[1]. These PTMs aid in regions of the DNA that are destined to be transcribed. NF-Y is also involved in recruiting enzymes responsible for acetylations on active promoters. Furthermore, NF-Y is a sequence-specific TF. It is possible that NF-Y and other sequence-specific TFs determine histone modifications on promoters.
Protein Structure
NF-Y transcription factor consists of , , and subunits. NF-YA subunit contains two α-helices, NF-YB subunit contains four α-helices and two β-sheets, and NF-YC subunit contains three α-helices and two β-sheets. The NF-YB and NF-YC subunits each contain a histone fold motif and form a NF-YB/NF-YC heterodimer[2]. One of the two α helices of the NF-YA subunit, the N terminal , interacts with NF-YB/NF-YC heterodimer resulting in a heterotrimer. The NF-Y heterotrimer is stabilized by ionic interactions, interactions between the backbone atoms of residues, and hydrophobic residues. Stabilizing ionic interactions occur between Asn239(NF-YA) with Asp109(NF-YC) and Asp112(NF-YC. Residue backbone interactions occur between Leu123(NF-YB) with Phe113(NF-YC), Arg245(NF-YA) with Glu98(NF-YB) and Glu101(NF-YB), Arg249(NF-YA) with Glu90(NF-YB), and Arg250(NF-YA) with Asp116(NF-YC. Hydrophobic residues that contribute to the stabilization of the NF-Y heterotrimer are only located at NF-YA and NF-YB subunits at residues Ile246(NF-YA), Phe94(NF-YB), and Ile115(NF-YB). The NF-Y heterotrimer is also stabilized by the segment through intramolecular interactions of NF-YA residues on the main chain and side chain. Along with stabilization, the A1A2 linker provides the flexibility needed to direct the NF-YA chain toward DNA.
Interaction With DNA
The C terminal of the NF-YA subunit inserts deep into the minor groove of DNA. NF-YA A2 helix binds to the box and causes the minor groove to widen at the CCAAT box. An important residue in the catalytic site is
References
- ↑ 3.0 3.1 3.2 3.3 Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R. Sequence-Specific Transcription Factor NF-Y Displays Histone-like DNA Binding and H2B-like Ubiquitination. Cell. 2013 Jan 17;152(1-2):132-43. doi: 10.1016/j.cell.2012.11.047. PMID:23332751 doi:http://dx.doi.org/10.1016/j.cell.2012.11.047
- ↑ Xiao J, Zhou Y, Lai H, Lei S, Chi LH, Mo X. Transcription Factor NF-Y Is a Functional Regulator of the Transcription of Core Clock Gene Bmal1. J Biol Chem. 2013 Nov 1;288(44):31930-6. doi: 10.1074/jbc.M113.507038. Epub 2013 , Sep 12. PMID:24030830 doi:http://dx.doi.org/10.1074/jbc.M113.507038