We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Sandbox Reserved 930

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 23: Line 23:
==Introduction of the Myosin head S1 ==
==Introduction of the Myosin head S1 ==
<StructureSection load='1B7T' size='450' frame='true' side='right' caption='Myosin subfragment 1' scene='57/579700/Whole_structure/3'>
<StructureSection load='1B7T' size='450' frame='true' side='right' caption='Myosin subfragment 1' scene='57/579700/Whole_structure/3'>
 +
[[Image:SUBDOMAINS.gif‎|300px|right|thumb| The contractile cycle of the myosin head]]
Myosin is a large asymmetric molecule with a MW of about 500,000 kDa. It consist of two globular head domains termed myosin subfragment 1 (S1), one neck subfragment 2 (S2) and a light meromyosin tail (LMM) <ref>PMID: 8203020</ref>. Myosin S1 unit comprises of a motor domain (MD) and a lever arm (Fig.3). By 2000 the structures of three scallop myosin S1 isoforms have been determined <ref>PMID: 11016966</ref><ref>PMID: 10338210</ref>, which are:
Myosin is a large asymmetric molecule with a MW of about 500,000 kDa. It consist of two globular head domains termed myosin subfragment 1 (S1), one neck subfragment 2 (S2) and a light meromyosin tail (LMM) <ref>PMID: 8203020</ref>. Myosin S1 unit comprises of a motor domain (MD) and a lever arm (Fig.3). By 2000 the structures of three scallop myosin S1 isoforms have been determined <ref>PMID: 11016966</ref><ref>PMID: 10338210</ref>, which are:

Revision as of 11:47, 16 May 2014

This Sandbox is Reserved from 01/04/2014, through 30/06/2014 for use in the course "510042. Protein structure, function and folding" taught by Prof Adrian Goldman, Tommi Kajander, Taru Meri, Konstantin Kogan and Juho Kellosalo at the University of Helsinki. This reservation includes Sandbox Reserved 923 through Sandbox Reserved 947.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Contents

Scallop myosin head in its pre power stroke state

Introduction

The movement of myosin motor domain on actin filament, 1cnt
The movement of myosin motor domain on actin filament, 1cnt
The contractile cycle of the myosin head
The contractile cycle of the myosin head

In the striated muscle the actin and myosin proteins form ordered basic units called sarcomeres. Muscle contraction is achieved by the mechanical sliding of myosin filament (thick filament) along the actin filament (thin filament), Fig. 1. The major constituent of the myosin filament is myosin, a motor protein responsible for converting chemical energy to mechanical movement. In the presence of Ca2+ and Mg2+, myosin is able to cyclically bind ATP and hydrolyse it to ADP + Pi , triggering subsequent myosin-actin detachment, reattachment and power stroke, so called contractile reaction (Fig.2).







.

Introduction of the Myosin head S1

Myosin subfragment 1

Drag the structure with the mouse to rotate

References

1) Gourinath, S. et. al. 2003. Crystal Structure of Scallop Myosin S1 in the Pre-Power Stroke State to 2.6 Å Resolution: Flexibility and Function in the Head. Structure. 11(12): 1621–1627

2) Himmel, D. M. et. al. 2002. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: Further insights into the mechanics of the motor. Proc Natl Acad Sci U S A. 99(20): 12645–12650. 3) Houdusse, A. et. al. 2000. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. Oct 10, 2000; 97(21): 11238–11243.

4) Krans, J. 2010. The Sliding Filament Theory of Muscle Contraction. Nature Education 3(9):66

5) Risal, D. et. al. 2004. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci U S A. 101(24): 8930–8935.

Personal tools