We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Sandbox Reserved 930

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
==Introduction==
==Introduction==
[[Image:Actin myosin anim.gif|400px|left|thumb| Figure 1. The movement of myosin motor domain on actin filament]]
[[Image:Actin myosin anim.gif|400px|left|thumb| Figure 1. The movement of myosin motor domain on actin filament]]
-
[[Image:myosin.png‎|450px|right|thumb| Figure 2. The contractile cycle of the myosin head]]
+
[[Image:myosin.png‎|450px|right|thumb| Figure 2. The contractile cycle of the myosin head]] <references>
In the striated muscle the actin and myosin proteins form ordered basic units called sarcomeres. Muscle contraction is achieved by the mechanical sliding of myosin filament (thick filament) along the actin filament (thin filament), Fig. 1. The major constituent of the myosin filament is myosin, a motor protein responsible for converting chemical energy to mechanical movement. In the presence of Ca<sup>2+</sup> and Mg<sup>2+</sup>, myosin is able to cyclically bind ATP and hydrolyse it to ADP + P<sub>i</sub> , triggering subsequent myosin-actin detachment, reattachment and power stroke, so called contractile reaction (Fig.2).
In the striated muscle the actin and myosin proteins form ordered basic units called sarcomeres. Muscle contraction is achieved by the mechanical sliding of myosin filament (thick filament) along the actin filament (thin filament), Fig. 1. The major constituent of the myosin filament is myosin, a motor protein responsible for converting chemical energy to mechanical movement. In the presence of Ca<sup>2+</sup> and Mg<sup>2+</sup>, myosin is able to cyclically bind ATP and hydrolyse it to ADP + P<sub>i</sub> , triggering subsequent myosin-actin detachment, reattachment and power stroke, so called contractile reaction (Fig.2).

Revision as of 12:10, 16 May 2014

This Sandbox is Reserved from 01/04/2014, through 30/06/2014 for use in the course "510042. Protein structure, function and folding" taught by Prof Adrian Goldman, Tommi Kajander, Taru Meri, Konstantin Kogan and Juho Kellosalo at the University of Helsinki. This reservation includes Sandbox Reserved 923 through Sandbox Reserved 947.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Scallop myosin head in its pre power stroke state

Introduction

Figure 1. The movement of myosin motor domain on actin filament
Figure 1. The movement of myosin motor domain on actin filament
Figure 2. The contractile cycle of the myosin head
Figure 2. The contractile cycle of the myosin head
Cite error: Invalid <references> tag;

no input is allowed. Use <references />

Personal tools