We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
Sandbox Reserved 1085
From Proteopedia
(Difference between revisions)
| Line 19: | Line 19: | ||
The <scene name='69/699998/Monomer/2'>monomer</scene> of Aquifex aeolicus RNase III (Aa-RNase III) are composed of an <scene name='69/699998/Endond/1'>endonuclease domain</scene> (endoND) and a <scene name='69/699998/Dsrbd/3'>dsRNA binding domain</scene> (dsRBD)[1]. The sequence of the endoND is characterized by a stretch of conserved residues (37ERLEFLGD44 in Aa-RNase III), which is known as the RNase III signature motif and makes up a large part of the active center. RNase III can affect gene expression in either of two ways: as a processing enzyme which RNase III cleaves both natural and synthetic dsRNA into small duplex products averaging 10–18 base pairs in length, or as a binding protein which binds and stabilizes certain RNAs, thus suppressing the expression of certain genes[2, 3]. | The <scene name='69/699998/Monomer/2'>monomer</scene> of Aquifex aeolicus RNase III (Aa-RNase III) are composed of an <scene name='69/699998/Endond/1'>endonuclease domain</scene> (endoND) and a <scene name='69/699998/Dsrbd/3'>dsRNA binding domain</scene> (dsRBD)[1]. The sequence of the endoND is characterized by a stretch of conserved residues (37ERLEFLGD44 in Aa-RNase III), which is known as the RNase III signature motif and makes up a large part of the active center. RNase III can affect gene expression in either of two ways: as a processing enzyme which RNase III cleaves both natural and synthetic dsRNA into small duplex products averaging 10–18 base pairs in length, or as a binding protein which binds and stabilizes certain RNAs, thus suppressing the expression of certain genes[2, 3]. | ||
| - | On the basis of the structural and biochemical data, catalytic models were proposed before the structure of a catalytic complex became available. The crystal structure shows that Aa-RNase III is composed of a <scene name='69/699998/Dimer/3'>symmetric dimer</scene>. In addition, in vivo data suggested that E110, E37, D44, and E64 are essential for catalysis[4]. This led to the model of the proteins active centers, which can accommodate a dsRNA substrate, each containing two different RNA cleavage sites, <scene name='69/699998/D44_e110_e37_e64/1'>D44/E110 and E37/E64</scene>. Specifically, E64 from each partner subunit, along with E37, E40, and D44 are located in the signature motif located at each end of a valley-like cleft[5]. Comparing the structure of Aa-RNase III with the structure of RNA-free Thermotoga maritima RNase III (RNA-free Tm-RNase III, PDB ID code 1O0W)[6] shows that there is dramatic rotation and shift of dsRBD due to RNA binding, and there is a <scene name='69/699998/Linker/1'>flexible linker</scene> KGEMLFD between endoRD and dsRBD leading the rotation happend. In addtion, the two dsRBDs are apart from each other, allowing free rotation of dsRBDdsRNA around the linker. | + | On the basis of the structural and biochemical data, catalytic models were proposed before the structure of a catalytic complex became available. The crystal structure shows that Aa-RNase III is composed of a <scene name='69/699998/Dimer/3'>symmetric dimer</scene>. In addition, in vivo data suggested that E110, E37, D44, and E64 are essential for catalysis[4]. This led to the model of the proteins active centers, which can accommodate a dsRNA substrate, each containing two different RNA cleavage sites, <scene name='69/699998/D44_e110_e37_e64/1'>D44/E110 and E37/E64</scene>. Specifically, E64 from each partner subunit, along with E37, E40, and D44 are located in the signature motif located at each end of a valley-like cleft[5]. Comparing the structure of Aa-RNase III with the structure of RNA-free Thermotoga maritima RNase III (RNA-free Tm-RNase III, PDB ID code 1O0W)[6] shows that there is <scene name='69/699998/Linker_rotation/1'>dramatic rotation</scene> and shift of dsRBD due to RNA binding, and there is a <scene name='69/699998/Linker/1'>flexible linker</scene> KGEMLFD between endoRD and dsRBD leading the rotation happend. In addtion, the two dsRBDs are apart from each other, allowing free rotation of dsRBDdsRNA around the linker. |
Revision as of 11:26, 22 April 2015
| This Sandbox is Reserved from 15/04/2015, through 15/06/2015 for use in the course "Protein structure, function and folding" taught by Taru Meri at the University of Helsinki. This reservation includes Sandbox Reserved 1081 through Sandbox Reserved 1090. |
To get started:
More help: Help:Editing |
Endoribonuclease III
| |||||||||||
References
- ↑ Lioliou E, Sharma CM, Caldelari I, et al. Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression. Hughes D, ed. PLoS Genetics. 2012;8(6):e1002782. doi:10.1371/journal.pgen.1002782
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
