| Structural highlights
Disease
[SUZ12_HUMAN] A chromosomal aberration involving SUZ12 may be a cause of endometrial stromal tumors. Translocation t(7;17)(p15;q21) with JAZF1. The translocation generates the JAZF1-SUZ12 oncogene consisting of the N-terminus part of JAZF1 and the C-terminus part of SUZ12. It is frequently found in all cases of endometrial stromal tumors, except in endometrial stromal sarcomas, where it is rarer.[1]
Function
[RBBP4_HUMAN] Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex.[2] [AEBP2_HUMAN] DNA-binding transcriptional repressor. May interact with and stimulate the activity of the PRC2 complex, which methylates 'Lys-9' and 'Lys-27' residues of histone H3.[3] [SUZ12_HUMAN] Polycomb group (PcG) protein. Component of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1 and CDKN2A.[4] [5] [6] [7] [8] [9]
Publication Abstract from PubMed
Developmentally regulated accessory subunits dictate PRC2 function. Here, we report the crystal structures of a 120 kDa heterotetrameric complex consisting of Suz12, Rbbp4, Jarid2, and Aebp2 fragments that is minimally active in nucleosome binding and of an inactive binary complex of Suz12 and Rbbp4. Suz12 contains two unique structural platforms that define distinct classes of PRC2 holo complexes for chromatin binding. Aebp2 and Phf19 compete for binding of a non-canonical C2 domain of Suz12; Jarid2 and EPOP occupy an overlapped Suz12 surface required for chromatin association of PRC2. Suz12 and Aebp2 progressively block histone H3K4 binding to Rbbp4, suggesting that Rbbp4 may not be directly involved in PRC2 inhibition by the active H3K4me3 histone mark. Nucleosome binding enabled by Jarid2 and Aebp2 is in part accounted for by the structures, which also reveal that disruption of the Jarid2-Suz12 interaction may underlie the disease mechanism of an oncogenic chromosomal translocation of Suz12.
Unique Structural Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding.,Chen S, Jiao L, Shubbar M, Yang X, Liu X Mol Cell. 2018 Mar 1;69(5):840-852.e5. doi: 10.1016/j.molcel.2018.01.039. PMID:29499137[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H, Dal Cin P, Fletcher JA, Sklar J. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6348-53. PMID:11371647 doi:http://dx.doi.org/10.1073/pnas.101132598
- ↑ Zhang Q, Vo N, Goodman RH. Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Mol Cell Biol. 2000 Jul;20(14):4970-8. PMID:10866654
- ↑ Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004 Jul 2;15(1):57-67. PMID:15225548 doi:10.1016/j.molcel.2004.06.020
- ↑ Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004 Jul 2;15(1):57-67. PMID:15225548 doi:10.1016/j.molcel.2004.06.020
- ↑ Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 2004 Jul 1;18(13):1592-605. PMID:15231737 doi:10.1101/gad.1200204
- ↑ Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004 Oct 13;23(20):4061-71. Epub 2004 Sep 23. PMID:15385962 doi:10.1038/sj.emboj.7600402
- ↑ Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006 May 1;20(9):1123-36. Epub 2006 Apr 17. PMID:16618801 doi:http://dx.doi.org/10.1101/gad.381706
- ↑ Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007 Mar 1;21(5):525-30. PMID:17344414 doi:http://dx.doi.org/10.1101/gad.415507
- ↑ Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol. 2008 Apr;28(8):2718-31. doi: 10.1128/MCB.02017-07. Epub 2008 Feb, 19. PMID:18285464 doi:10.1128/MCB.02017-07
- ↑ Chen S, Jiao L, Shubbar M, Yang X, Liu X. Unique Structural Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding. Mol Cell. 2018 Mar 1;69(5):840-852.e5. doi: 10.1016/j.molcel.2018.01.039. PMID:29499137 doi:http://dx.doi.org/10.1016/j.molcel.2018.01.039
|