We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.2em;">
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.2em;">
-
<b>Because life has more than 2D</b>, Because life is more than 2D, Proteopedia aids in understanding the 3D relationships between function & structure of biomacromolecules
+
<b> Because life is more than 2D</b>, Proteopedia aids in understanding the 3D relationships between function & structure of biomacromolecules
</span>
</span>

Revision as of 07:47, 21 October 2018

ISSN 2310-6301

Because life is more than 2D, Proteopedia aids in understanding the 3D relationships between function & structure of biomacromolecules


Selected Pages Art on Science Journals Education
About this image
Self-assembling Nano-Cages

Huddy, Hsia, Kibler, Xu & 27 others in the Nobel Prize winning group of David Baker have designed standardized protein building blocks that self assemble into a wide range of nanostructures. The building blocks attach to each other at engineered sites and angles, and come in various sizes.

>>> Get a quick overview! >>>

About this image
Molecular Sculpture

by Eric Martz
A historical review on sculptures and physical models of macromolecules.

>>> Visit this page >>>

About this image
Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.

H Matsunami, YH Yoon, VA Meshcheryakov, K Namba, FA Samatey. Scientific Reports 2016 doi: 10.1038/srep27399
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain.

>>> Visit this I3DC complement >>>

About this image
Tutorial: The Ramachandran principle, phi (φ) and psi (ψ) angles in proteins

by Eric Martz
The Ramachandran Principle says that alpha helices, beta strands, and turns are the most likely conformations for a polypeptide chain to adopt, because most other conformations are impossible due to steric collisions between atoms. Check Show Clashes to see where non-bonded atoms are overlapping, and thus in physically impossible positions.

>>> Visit this tutorial >>>

How to add content to Proteopedia

Video Guides

Who knows ...

List of Art on Science pages in Proteopedia

What is an Interactive 3D Complement (I3DC)?

List of I3DCs

How to get an I3DC for your paper

Teaching Strategies Using Proteopedia

Examples of Pages for Teaching

How to add content to Proteopedia

About Image:Contact-email.png Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools