Sandbox Reserved 1482
From Proteopedia
| Line 23: | Line 23: | ||
== Function == | == Function == | ||
| - | Factor VIII plays a central role in blood coagulation | + | ====Factor VIII plays a central role in blood coagulation==== |
| Line 29: | Line 29: | ||
| - | The coagulation process | + | ====The coagulation process==== |
In response to an injury, the coagulation factor VIII is separated from von Willebrand factor. The active form is called “Factor VIIIa” and is obtained by a proteolytic cleavage of the B-domain of Factor VIII by thrombin <sup>[8,9]</sup>. Then the two remaining chains are linked together thanks to a metal link (probably calcium ion) <sup>[9]</sup>. | In response to an injury, the coagulation factor VIII is separated from von Willebrand factor. The active form is called “Factor VIIIa” and is obtained by a proteolytic cleavage of the B-domain of Factor VIII by thrombin <sup>[8,9]</sup>. Then the two remaining chains are linked together thanks to a metal link (probably calcium ion) <sup>[9]</sup>. | ||
| Line 41: | Line 41: | ||
== Structure == | == Structure == | ||
| - | + | ====Primary Structure==== | |
In humans, factor VIII is encoded by the F8 gene <sup>[1,2,9]</sup>. This gene maps on the most distant band of the long arm of the X-chromosome (region Xq28). It is 186 kb in size (0.1 % of the whole size of the chromosome) and contains 26 exons <sup>[4]</sup>. | In humans, factor VIII is encoded by the F8 gene <sup>[1,2,9]</sup>. This gene maps on the most distant band of the long arm of the X-chromosome (region Xq28). It is 186 kb in size (0.1 % of the whole size of the chromosome) and contains 26 exons <sup>[4]</sup>. | ||
| - | + | ====Secondary Structure==== | |
Factor VIII protein is composed of six globular domains: A<sub>1</sub>-A<sub>2</sub>-B-A<sub>3</sub>-C<sub>1</sub>-C<sub>2</sub> and contains one Ca<sup>2+</sup> and two Cu<sup>2+</sup> ions. It has a molecular weight of 330 kDa [1,9,14]. | Factor VIII protein is composed of six globular domains: A<sub>1</sub>-A<sub>2</sub>-B-A<sub>3</sub>-C<sub>1</sub>-C<sub>2</sub> and contains one Ca<sup>2+</sup> and two Cu<sup>2+</sup> ions. It has a molecular weight of 330 kDa [1,9,14]. | ||
| Line 67: | Line 67: | ||
| - | + | ====Ligands==== | |
Alpha-D-mannose, calcium ion (Ca<sup>2+</sup>), copper ion (Cu<sup>2+</sup>) and N-acetl-D-glucosamine are the four ligands the factor VIII is able to bind to <sup>[2]</sup>. | Alpha-D-mannose, calcium ion (Ca<sup>2+</sup>), copper ion (Cu<sup>2+</sup>) and N-acetl-D-glucosamine are the four ligands the factor VIII is able to bind to <sup>[2]</sup>. | ||
In factor VIII there are two copper ions and their binding sites are located internally within the A<sub>3</sub> and the A<sub>1</sub> domain. In the latter, there is another ligand, a single calcium ion, bound to its binding site <sup>[9]</sup>. | In factor VIII there are two copper ions and their binding sites are located internally within the A<sub>3</sub> and the A<sub>1</sub> domain. In the latter, there is another ligand, a single calcium ion, bound to its binding site <sup>[9]</sup>. | ||
| Line 82: | Line 82: | ||
| - | Inheritance | + | ====Inheritance==== |
Hemophilia A is inherited in an X-linked recessive manner: | Hemophilia A is inherited in an X-linked recessive manner: | ||
Females inherit two X chromosomes, one from their mother and one from their father (XX). Males inherit an X chromosome from their mother and a Y chromosome from their father (XY). This means that if a son inherits an X chromosome carrying hemophilia from his mother, he will have hemophilia. By contrast, daughters have two X chromosomes, even if they inherit the hemophilia gene from their mother, they inherit a healthy X chromosome from their father and as a result they are only carrier but not affected. | Females inherit two X chromosomes, one from their mother and one from their father (XX). Males inherit an X chromosome from their mother and a Y chromosome from their father (XY). This means that if a son inherits an X chromosome carrying hemophilia from his mother, he will have hemophilia. By contrast, daughters have two X chromosomes, even if they inherit the hemophilia gene from their mother, they inherit a healthy X chromosome from their father and as a result they are only carrier but not affected. | ||
Revision as of 15:33, 10 January 2019
| This Sandbox is Reserved from 06/12/2018, through 30/06/2019 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1480 through Sandbox Reserved 1543. |
To get started:
More help: Help:Editing |
Coagulation Factor VIII (3cdz)
| |||||||||||
References
↑[1] UniProtKB – P00451 (FA8_HUMAN) (https://www.uniprot.org/uniprot/P00451)
↑[2] Protein Database: 3CDZ. 2008 (http://www.rcsb.org/structure/3CDZ)
↑[3] Bihoreau N1, Fontaine-Aupart MP, Lehegarat A, Desmadril M, Yon JM. First determination of the secondary structure of purified factor VIII light chain. Biochem J. 1992 Nov 15; 288 ( Pt 1):35-40. PMID: 1445279.
↑[4] S. E. Antonarakis. Molecular genetics of coagulation factor VIII gene and haemophilia A. Thromb Haemost. 1995 Jul; 74(1):322-8. PMID: 8578479
↑[5] Rosendaal, F. R. (2001). Definitions in hemophilia, Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis Factor VII and Factor IX Subcommittee.
↑[6] Barbara A Konkle, MD, Haley Huston, BS, and Shelley Nakaya Fletcher, BS. Hemophilia A, Synonym: Factor VIII Deficiency. Gene Rewiews. 2017 Jun 22.
↑[7] Srivastava, A., Brewer, A. K., Mauser‐Bunschoten, E. P., Key, N. S., Kitchen, S., Llinas, A., ... & Street, A. (2013). Guidelines for the management of hemophilia. Haemophilia, 19(1), e1-e47.
↑[8] Wikipedia, Factor VIII (https://en.wikipedia.org/wiki/Factor_VIII)
↑[9] Ngo JC, Huang M, Roth DA, Furie BC, Furie B. Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure. 2008 Apr; 16(4):597-606. doi: 10.1016/j.str.2008.03.001. PMID: 18400180
↑[10] Patek, A. J., & Taylor, F. H. L. (1937). Hemophilia. II. Some properties of a substance obtained from normal human plasma effective in accelerating the coagulation of hemophilic blood. The Journal of clinical investigation, 16(1), 113-124.
↑ [11] Toole, J. J., Pittman, D. D., Orr, E. C., Murtha, P., Wasley, L. C., & Kaufman, R. J. (1986). A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proceedings of the National Academy of Sciences, 83(16), 5939-5942.
↑ [12] Ragni, M. V. (2018). Mimicking Factor VIII to Manage the Factor VIII–Deficient State. The New England journal of medicine, 379(9), 880-882.
↑ [13] Dallman, P. R., & Pool, J. G. (1968). Treatment of hemophilia with factor VIII concentrates. New England Journal of Medicine, 278(4), 199-202.
↑ [14] El Khorassani, M., & Benkirane Agoumi, N. (1996). Le facteur VIII coagulant. Médecine du Maghreb, 55, 11-13.
↑ [15] Ljung, R. C. (2018). Prevention and management of bleeding episodes in children with hemophilia. Pediatric Drugs, 1-10.
