Sandbox Reserved 1652

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: {{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE --> ==Your Heading Here (maybe something like 'Structure')== <StructureSection load='1stp' size='340' side='right' capti...)
Line 1: Line 1:
{{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
{{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
-
==Your Heading Here (maybe something like 'Structure')==
+
== The Transient Receptor Potential cation channel subfamily V member 1 TRPV1 ==
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
-
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
 
-
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
 
-
== Function ==
 
-
== Disease ==
+
== Introduction ==
 +
[(TRPV1)] (Vanilloid Transient Receptor Potential Type 1) is a non-selective ion channel which, in response to a stimulus, induces an incoming current of cations, primarily calcium and sodium, which causes depolarization of the cell. It is part of the [https://en.wikipedia.org/wiki/Transient_receptor_potential_channel TRP] (Transient Receptor Potential) superfamily and is the first in a subfamily of vanilloid-sensitive TRP channels / channels: TRPVs.
 +
This receptor is expressed by sensory neurons of the dorsal and trigeminal spinal ganglia which secrete CGRP (calcitonin gene-related peptide) and substance P, two neuropeptides. <ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
 +
 
 +
== Structure of TRPV1 ==
 +
The TRPV1 receptor is a transmembrane protein receptor. It is made up of ‘’’839 amino acids’’’. It’s molecular weight is ‘’’94 938Da’’’. <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
 +
 
 +
TRPV1 are ‘’’tetrameric’’’ channel type receptors. The four subunits from a symmetry plane around a pore allowing the passage of ions.
 +
Each TRPV1 subunits are made of one N-terminal tail, one transmembrane region, a C-terminal tail preceded by a TRP domain. The N-terminal and C-terminal region are intracellular. N and C terminal region are responsible of 70% of the total mass of TRPV1. [2] <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
 +
 
 +
TRPV1 exists in two states : the open state and the closed state[3, p. 1] <ref> T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007</ref>
 +
 
 +
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin]. N-terminal region is followed by a linker domain. [2][4]. <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
 +
<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref>
 +
 
 +
The transmembrane region is composed of six transmembrane a helices (S1-S6). S4 and S5 are separated by a linker parallel to the membrane. A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor. [2][1] <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).</ref>
 +
<ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
 +
 
 +
S1,S2,S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516) [2] <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
 +
 
 +
‘’’Threonin’’’ residu (T550) and ‘’’tyrosin’’’ residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation. [5] <ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref>
 +
 
 +
The S6 domain links the receptor to the C-terminal domain of TRPV1.The C-terminal is made of 150 amino acids and it contains ‘’’TRP domain’’’[4] <ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
 +
. The TRP domain is made of 23-25 aminoacids with a alpha helical structure, it is found in many TRP family members [2] <ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
 +
 
 +
TRP domain is necessary for the formation of tetrameric TRPV1.
 +
Many amino-acids of the C-terminal domain are the target of post-translationnal modifications by [https://en.wikipedia.org/wiki/Kinase kinases] and [https://en.wikipedia.org/wiki/Phosphatase phosphatases].[6] <ref>X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042</ref>
 +
 
 +
== Relation structure-function ==
 +
 
 +
TRPV1 is a ‘’’homotetramer’’’ in which each subunit has several phosphorylation sites for PKA (protein kinase A), PKC (protein kinase C) and CaMkII (Ca2 + / calmodulin-dependent kinase II), as well as numerous glycosylation sites. These domains play a crucial role in the regulation of TRPV1 activity.
 +
The state of the channel is modulated by two types of molecules: agents that promote its opening of the channel, called [https://en.wikipedia.org/wiki/Agonist agonists], and agents that induce its closure or prevent its opening, called [https://en.wikipedia.org/wiki/Antagonist antagonists].
 +
 
 +
=== Activators ===
 +
#Capsaicin
 +
 
 +
[[Image : https://commons.wikimedia.org/wiki/File:Capsaicin_Formulae.png?uselang=fr]]
 +
 
 +
Capsaicin is an active compound in chili.
 +
TRPV1 receptor has a ‘’’capsaicin-binding pocket’’’ formed by S3,S4 and S4-S5 linker. The capsaicin-binding pocket is surrounded by the residues Y511, S512,T550.[7] <ref>F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.</ref>
 +
 +
Bound [https://en.wikipedia.org/wiki/Capsaicin capsaicin] is oriented in a « tail-up, head down » configuration. In this configuration the vanillyl and amide groups of capsaicin form specific interactions with TRPV1,capsaicin is anchored into the receptor [8]. <ref>F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.</ref>
 +
 
 +
 +
The capsaicin cycle binds via hydrogen bounds to amino acids on the S3 helix (Y511, S513), on the S4-S5 linker (E571) and on the S6 helix (T671). The amid group of capsaicin binds the S4 helix (T551)[4]. <ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
 +
 
 +
 +
Capsaicin maintains TRPV1 in an open state by «pull and contact» interactions. A conformational change wave spread over the whole pore [9]. <ref>F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.</ref>
 +
 
 +
This leads to the massive enter of Ca2+ and Na+ in the cytoplasm of the nerve fiber and to the depolarization of the nerve fiber. When depolarization reach a theshold value it triggers the generation of an [https://en.wikipedia.org/wiki/Action_potential action potential] causing a painful sensation. [1, p. 1] <ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512</ref>
 +
 
 +
#Résinifératoxine (RTX)
 +
 
 +
[[Image : https://upload.wikimedia.org/wikipedia/commons/c/c5/Resiniferatoxin.svg]]
 +
 
 +
[(Resiniferatoxin)] is a ‘’’natural analogue of capsaicin’’’. It is the most potent TRPV1 agonist known, with a binding affinity for TRPV1 ~500x higher than that of capsaicin.
 +
Stimulation by resiniferatoxin makes this ion channel permeable to cations, especially calcium.
 +
 
 +
The pocket size characteristics of the TRPV1-RTX allow the installation of large structures such as the RTX :
 +
The ‘’’sub-pocket’’’ near Y511 is shallow in the TRPV1-RTX because Y511 and E570 are close and I569 is oriented towards the vanilloid pocket.
 +
 
 +
The sub-pocket near L669, V583, and F587 is wide due to the projection of these amino acids out of the vanilloid pocket. This sub-pocket accommodates the [https://en.wikipedia.org/wiki/Diterpene diterpene] group of the RTX.
 +
However, the orientation of L515 and M547 makes this region of the vanilloid pocket narrow, which considerably limits the nature of the fragments tolerated.
 +
 
 +
The aromatic is located deeper in the sub-pocket near Y511 and is oriented almost parallel to the aromatic side chain of Y511, so it establishes a strong interaction π-π. The aromatic hydroxyl and methoxy groups of the RTX form strong hydrogen bonds with E570, R557 and S512. The ester group is linked to Y511 and T550 by hydrogen bonds. <ref>K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.</ref>
 +
 
 +
=== Regulation ===
 +
 
 +
#Sensitization
 +
 
 +
’’Phosphorylation’’’ of the TRPV1 receptor leads to its sensitization.
 +
Phosphorylations occurs on multiple phosphorylation sites at both N-terminal and C-terminal sites of TRPV1 by [https://en.wikipedia.org/wiki/Kinase kinases]. Phosphorylations are either caused by PKC (IP3 signalling), by PKA (AMPc signalling) or by CamKII an PI3K.[11][4] <ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref>
 +
 
 +
<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
 +
 
 +
PKC phosphorlyates TRPV1 at S800,S502, PKA phosphorylates TRPV1 at S116.
 +
The phosphorylation of TRPV1 lead to an increase in the expression of TRPV1 at the membrane surface[11] <ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref>
 +
 
 +
Moreover, phosphorylated TRPV1 would have a reduced channel opening threshold [12]. <ref>G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.</ref>
 +
 
 +
As a result phosphorylated TRPV1 are more responsive to agonist because they are overexpressed and the same quantity of agonist leads to a better openings of ion channels.
 +
 
 +
#Desensitization
 +
 
 +
A repeated exposure of TRPV1 to capsaicin fails to activate the receptor. It occurs by a CA2+-dependent mechanism that leads to a ‘’’desphosphorylation’’’ by the calcineurin [https://en.wikipedia.org/wiki/Phosphatase phosphatase] of the serine and threonine residues which have been previously phosphorylated by PKA. Thus, the decrease in TRPV1 phosphorylation diminish the sensitivity of the capsaicin channel and so a decrease in the response of the capsaicin by ‘’’negative feedback’’’.
 +
The influx of cations causes the ‘’’depolarisation’’’ of the neuron, which transmits signals like those that would be transmitted if the innervated tissue were burnt or damaged. This stimulation is followed by desensitisation and analgesia, partly because the ‘’’nerve endings die’’’ due to calcium overload.
 +
 
 +
== Implication of TRPV1 in the treatment of pain ==
 +
In 2011 Qutenza (NeurogesX) patch containing 8% of capsaicin has been markered in France and indicated in the ‘’’treatment of non-diabetic neuropathic pain’’’.
 +
The absorption through the skin of these creams generated partial desensitization of the nerve endings. This is the cause of a decrease in painful sensations. [13] <ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
 +
 
 +
 
 +
Many laboratories are conducting clinical studies on oral TRPV1 antagonists: GlaxoSmithKline, Amgen, Merk-Neurogen, Abbot, Eli-Lilly-Glenmark, AstraZeneca and Japan Tobacco. The major problem with these pain relievers is the [https://en.wikipedia.org/wiki/Hyperthermia hyperthermia] generated in humans by AMG517 (Amgen lab) and ABT-102 (Abbott lab). These effects caused these studies to be stopped in phase I[13]. <ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
 +
 
-
== Relevance ==
 
-
== Structural highlights ==
 
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 19:28, 7 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The Transient Receptor Potential cation channel subfamily V member 1 TRPV1

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  2. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  3. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  4. T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
  5. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  6. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
  7. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).
  8. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  9. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  10. R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
  11. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  12. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  13. X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
  14. F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
  15. F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
  16. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  17. F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.
  18. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512
  19. K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
  20. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  21. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  22. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  23. G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
  24. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
  25. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
Personal tools