Sandbox Reserved 1652

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
Each TRPV1 subunits are made of one '''N-terminal tail''', one '''transmembrane region''', a'' C-terminal tail'' preceded by a '''TRP domain'''. The N-terminal and C-terminal region are intracellular. N and C terminal region are responsible of 70% of the total mass of TRPV1.<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/>
Each TRPV1 subunits are made of one '''N-terminal tail''', one '''transmembrane region''', a'' C-terminal tail'' preceded by a '''TRP domain'''. The N-terminal and C-terminal region are intracellular. N and C terminal region are responsible of 70% of the total mass of TRPV1.<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/>
-
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin].<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/><ref name="Integrating TRPV1 Receptor Function with Capsaicin Psychophysics">G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref>
+
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin <scene name='86/868185/Ankyrin_residues_of_n-term/1'>ankyrin</scene>].<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/><ref name="Integrating TRPV1 Receptor Function with Capsaicin Psychophysics">G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref>
The transmembrane region is composed of '''six transmembrane a helices''' (S1-S6). S1,S2 and S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/> A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref name="TRPV1"/><ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/>
The transmembrane region is composed of '''six transmembrane a helices''' (S1-S6). S1,S2 and S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/> A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref name="TRPV1"/><ref name="Structure of the TRPV1 ion channel determined by electron cryo-microscopy"/>

Revision as of 10:34, 8 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The Transient Receptor Potential cation channel subfamily V member 1 TRPV1

Structure of TRPV1 in complex with capsazepine, determined in lipid nanodisc

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Wikipedia contributors. (2020b, décembre 21). TRPV1. Wikipedia. https://en.wikipedia.org/wiki/TRPV1 (Consulté le: déc. 28, 2020). [En ligne].
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Liao, M., Cao, E., Julius, D., & Cheng, Y. (2013b). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 504(7478), 107‑112. https://doi.org/10.1038/nature12822(consulté le déc. 28, 2020)
  3. T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
  4. 4.0 4.1 4.2 4.3 G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
  5. R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
  6. X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
  7. F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
  8. F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
  9. K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
  10. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  11. G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
  12. 12.0 12.1 A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
Personal tools