Sandbox Reserved 1653

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 48: Line 48:
Piezo 1 has a central domain which is composed of <scene name='86/868186/Cedohihctd_color2/1'>one CTD, one cap (or CED), 3 inner helice (IH) and 3 outer helice (OH)</scene>.
Piezo 1 has a central domain which is composed of <scene name='86/868186/Cedohihctd_color2/1'>one CTD, one cap (or CED), 3 inner helice (IH) and 3 outer helice (OH)</scene>.
-
This central domain is surrounded by 3 extended arms called <scene name='86/868186/Blade/1'>blades</scene> extending out from the central pore in a rotatory manner <ref name ="Alexandra"> Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012 </ref>.
+
This central domain is surrounded by 3 extended arms called <scene name='86/868186/Blade/2'>blades</scene> extending out from the central pore in a rotatory manner <ref name ="Alexandra"> Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012 </ref>.
"Each of these blades, deflecting at an angle of 100° perpendicular to the membrane, contains 6 tandems transmembranar helical unites (THUs) constitute
"Each of these blades, deflecting at an angle of 100° perpendicular to the membrane, contains 6 tandems transmembranar helical unites (THUs) constitute
of 4 transmembrane domains" <ref name= "Article six"> DOI 10.1038/nature25743</ref> <ref name="Alexandra"/>. "They are not planar: instead, they lie on a spherically curved surface with the membrane bulging into the cytoplasm".<ref name= "Piezo Senses Tension "> DOI 10.1016/j.cub.2018.02.078</ref>
of 4 transmembrane domains" <ref name= "Article six"> DOI 10.1038/nature25743</ref> <ref name="Alexandra"/>. "They are not planar: instead, they lie on a spherically curved surface with the membrane bulging into the cytoplasm".<ref name= "Piezo Senses Tension "> DOI 10.1016/j.cub.2018.02.078</ref>
Line 72: Line 72:
It forms an intracellular vestibule along the z-axis, and it is essential for ion permeation properties. More precisely, the pore module of Piezo channels comprises the C-terminal region from residues 2172 to 2547.<ref name="architecture"> DOI 10.1038/nature15247 </ref> The CTD triangular plane has a beam-facing side of the triangular, and it is separated into two surfaces with negative and positive electrostatic potentials.<ref name="mechanogating"/>
It forms an intracellular vestibule along the z-axis, and it is essential for ion permeation properties. More precisely, the pore module of Piezo channels comprises the C-terminal region from residues 2172 to 2547.<ref name="architecture"> DOI 10.1038/nature15247 </ref> The CTD triangular plane has a beam-facing side of the triangular, and it is separated into two surfaces with negative and positive electrostatic potentials.<ref name="mechanogating"/>
-
The beam is a 90 Å-long intracellular structure in the central region of the ion channel. It is a part of the three-bladed, propeller-shaped architecture characteristic of piezo1. It is a piece of the “beam-CTD-anchor-OH-IH” relaying interface that forms the central pore module. It is because the beam connects the THU, to the CTD and the outer helix (OH) that it enables the transmission of the mechanical force, and thus the opening of piezo1’s pore.<ref name="mechanogating"/> It delivers the mechanical signals from the blades, or the plasma membrane, to the central pore module region.<ref name="structural analysis"> DOI 10.4236/jbm.2019.712012 </ref>
+
The beam is a 90 Å-long intracellular structure in the central region of the ion channel. It is a <scene name='86/868186/Blade_ans_beam/1'>part of the three-bladed</scene>, propeller-shaped architecture characteristic of piezo1. It is a piece of the “beam-CTD-anchor-OH-IH” relaying interface that forms the central pore module. It is because the beam connects the THU, to the CTD and the outer helix (OH) that it enables the transmission of the mechanical force, and thus the opening of piezo1’s pore.<ref name="mechanogating"/> It delivers the mechanical signals from the blades, or the plasma membrane, to the central pore module region.<ref name="structural analysis"> DOI 10.4236/jbm.2019.712012 </ref>
Indeed, the beams are connected to the transmembrane helical units (THUs), which forms a triangular plane above its proximal end, more precisely to the intracellular surface of THU7–THU9. The THU7-THU8 makes the largest intracellular loop of piezo1. This loop starts at the distal end of the beam, interacts with the CTD, and then folds back to the distal end of the beam before connecting to a transmembrane region. Moreover, the beam crosses through the beam-facing side of the triangular CTD, forming interactions with both CTDα 1 and CTDα 2.
Indeed, the beams are connected to the transmembrane helical units (THUs), which forms a triangular plane above its proximal end, more precisely to the intracellular surface of THU7–THU9. The THU7-THU8 makes the largest intracellular loop of piezo1. This loop starts at the distal end of the beam, interacts with the CTD, and then folds back to the distal end of the beam before connecting to a transmembrane region. Moreover, the beam crosses through the beam-facing side of the triangular CTD, forming interactions with both CTDα 1 and CTDα 2.
This position and connections of the beam render it an ideal structure for mechanical transmission from the distal THUs to the central ion-conducting pore.
This position and connections of the beam render it an ideal structure for mechanical transmission from the distal THUs to the central ion-conducting pore.

Revision as of 10:37, 10 January 2021

Piezo 1

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels. Neuron. 2016 Mar 16;89(6):1248-1263. doi: 10.1016/j.neuron.2016.01.046. Epub 2016, Feb 25. PMID:26924440 doi:http://dx.doi.org/10.1016/j.neuron.2016.01.046
  2. 2.0 2.1 Parpaite T, Coste B. Piezo channels. Curr Biol. 2017 Apr 3;27(7):R250-R252. doi: 10.1016/j.cub.2017.01.048. PMID:28376327 doi:http://dx.doi.org/10.1016/j.cub.2017.01.048
  3. 3.0 3.1 3.2 3.3 3.4 Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH. Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation. Front Pharmacol. 2019 Nov 6;10:1304. doi: 10.3389/fphar.2019.01304. eCollection, 2019. PMID:31780935 doi:http://dx.doi.org/10.3389/fphar.2019.01304
  4. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
  5. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DA, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad KR, Evans PC, Ainscough JF, Beech DJ. Piezo1 integration of vascular architecture with physiological force. Nature. 2014 Nov 13;515(7526):279-82. doi: 10.1038/nature13701. Epub 2014 Aug 10. PMID:25119035 doi:http://dx.doi.org/10.1038/nature13701
  6. 6.0 6.1 6.2 6.3 Liang X, Howard J. Structural Biology: Piezo Senses Tension through Curvature. Curr Biol. 2018 Apr 23;28(8):R357-R359. doi: 10.1016/j.cub.2018.02.078. PMID:29689211 doi:http://dx.doi.org/10.1016/j.cub.2018.02.078
  7. Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
  8. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
  9. 9.0 9.1 Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012
  10. Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:29469092 doi:http://dx.doi.org/10.1038/nature25743
  11. Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
  12. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:26390154 doi:http://dx.doi.org/10.1038/nature15247
  13. 13.0 13.1 Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2017 Dec 20. pii: nature25453. doi: 10.1038/nature25453. PMID:29261642 doi:http://dx.doi.org/10.1038/nature25453
  14. 14.0 14.1 Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:26390154 doi:http://dx.doi.org/10.1038/nature15247
  15. 15.0 15.1 15.2 15.3 Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:29469092 doi:http://dx.doi.org/10.1038/nature25743
  16. doi: https://dx.doi.org/10.4236/jbm.2019.712012
  17. 17.0 17.1 Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, Feneant-Thibault M, Tertian G, de Jaureguiberry JP, Syfuss PY, Cahalan S, Garcon L, Toutain F, Simon Rohrlich P, Delaunay J, Picard V, Jeunemaitre X, Patapoutian A. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 2013;4:1884. doi: 10.1038/ncomms2899. PMID:23695678 doi:http://dx.doi.org/10.1038/ncomms2899
  18. Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, Vallefuoco F, Esposito MR, Vandorpe DH, Shmukler BE, Narayan R, Montanaro D, D'Armiento M, Vetro A, Limongelli I, Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW, Delaunay J, Iolascon A. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 2013 May 9;121(19):3925-35, S1-12. doi: 10.1182/blood-2013-02-482489. Epub, 2013 Mar 11. PMID:23479567 doi:http://dx.doi.org/10.1182/blood-2013-02-482489
Personal tools