Sandbox Reserved 1653
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
<references/><StructureSection load='5z10' size='350' side='right' caption='Piezo 1' scene=''> | <references/><StructureSection load='5z10' size='350' side='right' caption='Piezo 1' scene=''> | ||
- | Piezo proteins constitute a family of excitatory [[ion channels]] directly gated by mechanical forces. Piezo is functionally conserved and very important because all living organisms are subjected to mechanical forces from their environment for instance [https://en.wikipedia.org/wiki/Proprioception proprioception], [https://en.wikipedia.org/wiki/Osmoregulation osmoregulation], vascular tone, blood flow regulation, muscle [https://en.wikipedia.org/wiki/Homeostasis homeostasis], flow sensing in kidney, bladder and lungs. <ref name="Ion Permeation"> DOI 10.1016/j.neuron.2016.01.046 </ref>, | + | Piezo proteins constitute a family of excitatory [[ion channels]] directly gated by mechanical forces. Piezo is functionally conserved and very important because all living organisms are subjected to mechanical forces from their environment for instance [https://en.wikipedia.org/wiki/Proprioception proprioception], [https://en.wikipedia.org/wiki/Osmoregulation osmoregulation], vascular tone, blood flow regulation, muscle [https://en.wikipedia.org/wiki/Homeostasis homeostasis], flow sensing in kidney, bladder and lungs. <ref name="Ion Permeation"> DOI 10.1016/j.neuron.2016.01.046 </ref>,<ref name = "Cell Press"> DOI 10.1016/j.cub.2017.01.048 </ref> |
- | <ref name = "Cell Press"> DOI 10.1016/j.cub.2017.01.048 </ref> | + | |
== Function == | == Function == | ||
Line 68: | Line 67: | ||
The <scene name='86/868186/Ctd_trimeric/1'>CTD</scene> is a trimeric structure and is a part of the pore module of piezo channel. The CTD interacts with the long <scene name='86/868186/Anchor/1'>anchorα</scene>, and forms a hydrophobic interface. This forms a tripartite interaction with the <scene name='86/868186/E_dans_ctd/1'>glutamate-rich regions of the CTD</scene><ref name="mechanogating"> DOI 10.1038/nature25743 </ref> | The <scene name='86/868186/Ctd_trimeric/1'>CTD</scene> is a trimeric structure and is a part of the pore module of piezo channel. The CTD interacts with the long <scene name='86/868186/Anchor/1'>anchorα</scene>, and forms a hydrophobic interface. This forms a tripartite interaction with the <scene name='86/868186/E_dans_ctd/1'>glutamate-rich regions of the CTD</scene><ref name="mechanogating"> DOI 10.1038/nature25743 </ref> | ||
- | + | It forms an intracellular vestibule along the z-axis, and it is essential for ion permeation properties.<ref name="architecture"> DOI 10.1038/nature15247 </ref> The CTD triangular plane has a beam-facing side of the triangular, and it is separated into two surfaces with negative and positive electrostatic potentials.<ref name="mechanogating"/> | |
- | It forms an intracellular vestibule along the z-axis, and it is essential for ion permeation properties | + | |
The beam is a 90 Å-long intracellular structure in the central region of the ion channel. It is a <scene name='86/868186/Blade_ans_beam/1'>part of the three-bladed</scene>, propeller-shaped architecture characteristic of piezo1. It is a piece of the “beam-CTD-anchor-OH-IH” relaying interface that forms the central pore module. It is because the beam connects the THU, to the CTD and the outer helix (OH) that it enables the transmission of the mechanical force, and thus the opening of piezo1’s pore.<ref name="mechanogating"/> It delivers the mechanical signals from the blades, or the plasma membrane, to the central pore module region.<ref name="structural analysis"> DOI 10.4236/jbm.2019.712012 </ref> | The beam is a 90 Å-long intracellular structure in the central region of the ion channel. It is a <scene name='86/868186/Blade_ans_beam/1'>part of the three-bladed</scene>, propeller-shaped architecture characteristic of piezo1. It is a piece of the “beam-CTD-anchor-OH-IH” relaying interface that forms the central pore module. It is because the beam connects the THU, to the CTD and the outer helix (OH) that it enables the transmission of the mechanical force, and thus the opening of piezo1’s pore.<ref name="mechanogating"/> It delivers the mechanical signals from the blades, or the plasma membrane, to the central pore module region.<ref name="structural analysis"> DOI 10.4236/jbm.2019.712012 </ref> | ||
- | Indeed, the beams are connected to the transmembrane helical units (THUs), which forms a triangular plane above its proximal end | + | Indeed, the beams are connected to the transmembrane helical units (THUs), which forms a triangular plane above its proximal end. This makes the largest intracellular loop of piezo1, and it starts at the distal end of the beam, interacts with the CTD, and then folds back to the distal end of the beam before connecting to a transmembrane region. Moreover, the beam crosses through the beam-facing side of the triangular CTD, forming interactions with both CTDα 1 and CTDα 2. |
This position and connections of the beam render it an ideal structure for mechanical transmission from the distal THUs to the central ion-conducting pore. | This position and connections of the beam render it an ideal structure for mechanical transmission from the distal THUs to the central ion-conducting pore. | ||
- | The lever-like mechanotransduction apparatus constituted by the beam is possible because of its uneven movement. It displays large motion at the distal beam while subtle movement at the proximal end. It enables Piezo channels to effectively convert a large conformational change of the distal blades to a relatively slight opening of the central pore, allowing cation-selective permeation | + | The lever-like mechanotransduction apparatus constituted by the beam is possible because of its uneven movement. It displays large motion at the distal beam while subtle movement at the proximal end. It enables Piezo channels to effectively convert a large conformational change of the distal blades to a relatively slight opening of the central pore, allowing cation-selective permeation.<ref name="mechanogating"/> |
Revision as of 12:00, 10 January 2021
|
References
- ↑ 1.0 1.1 1.2 Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels. Neuron. 2016 Mar 16;89(6):1248-1263. doi: 10.1016/j.neuron.2016.01.046. Epub 2016, Feb 25. PMID:26924440 doi:http://dx.doi.org/10.1016/j.neuron.2016.01.046
- ↑ 2.0 2.1 Parpaite T, Coste B. Piezo channels. Curr Biol. 2017 Apr 3;27(7):R250-R252. doi: 10.1016/j.cub.2017.01.048. PMID:28376327 doi:http://dx.doi.org/10.1016/j.cub.2017.01.048
- ↑ 3.0 3.1 3.2 3.3 3.4 Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH. Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation. Front Pharmacol. 2019 Nov 6;10:1304. doi: 10.3389/fphar.2019.01304. eCollection, 2019. PMID:31780935 doi:http://dx.doi.org/10.3389/fphar.2019.01304
- ↑ Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
- ↑ Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DA, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad KR, Evans PC, Ainscough JF, Beech DJ. Piezo1 integration of vascular architecture with physiological force. Nature. 2014 Nov 13;515(7526):279-82. doi: 10.1038/nature13701. Epub 2014 Aug 10. PMID:25119035 doi:http://dx.doi.org/10.1038/nature13701
- ↑ 6.0 6.1 6.2 6.3 Liang X, Howard J. Structural Biology: Piezo Senses Tension through Curvature. Curr Biol. 2018 Apr 23;28(8):R357-R359. doi: 10.1016/j.cub.2018.02.078. PMID:29689211 doi:http://dx.doi.org/10.1016/j.cub.2018.02.078
- ↑ Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
- ↑ Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
- ↑ 9.0 9.1 Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012
- ↑ Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:29469092 doi:http://dx.doi.org/10.1038/nature25743
- ↑ Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
- ↑ Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:26390154 doi:http://dx.doi.org/10.1038/nature15247
- ↑ 13.0 13.1 Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2017 Dec 20. pii: nature25453. doi: 10.1038/nature25453. PMID:29261642 doi:http://dx.doi.org/10.1038/nature25453
- ↑ 14.0 14.1 Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:26390154 doi:http://dx.doi.org/10.1038/nature15247
- ↑ 15.0 15.1 15.2 15.3 Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:29469092 doi:http://dx.doi.org/10.1038/nature25743
- ↑ doi: https://dx.doi.org/10.4236/jbm.2019.712012
- ↑ 17.0 17.1 Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, Feneant-Thibault M, Tertian G, de Jaureguiberry JP, Syfuss PY, Cahalan S, Garcon L, Toutain F, Simon Rohrlich P, Delaunay J, Picard V, Jeunemaitre X, Patapoutian A. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 2013;4:1884. doi: 10.1038/ncomms2899. PMID:23695678 doi:http://dx.doi.org/10.1038/ncomms2899
- ↑ Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, Vallefuoco F, Esposito MR, Vandorpe DH, Shmukler BE, Narayan R, Montanaro D, D'Armiento M, Vetro A, Limongelli I, Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW, Delaunay J, Iolascon A. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 2013 May 9;121(19):3925-35, S1-12. doi: 10.1182/blood-2013-02-482489. Epub, 2013 Mar 11. PMID:23479567 doi:http://dx.doi.org/10.1182/blood-2013-02-482489