Sandbox Reserved 1659

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 23: Line 23:
== '''Structure''' ==
== '''Structure''' ==
-
LntA is a small basic protein of 9.7 kDa. This protein is highly conserved in L. monocytogenes and is absent in almost all non-pathogenic Listeria strains . This characteristic suggests that lntA plays a key role in Listeria’s virulence. The acidic part of LntA is composed of aspartic acid (<scene name='86/868192/Acidic/1'>17,8%</scene>) and the basic part is composed of lysine and arginine (<scene name='86/868192/Basic/1'>18,6%</scene>). LntA is composed of 5 alpha-helix, three of them are long antiparallel helix and can be seen as the core of the protein. The two remaining helix stick out the core. The 3 first helix are named <scene name='86/868192/Helix_h1/1'>H1</scene>, <scene name='86/868192/Helix_h2/1'>H2</scene> and <scene name='86/868192/Helix_h3/1'>H3</scene>. The 2 others are <scene name='86/868192/Helix_h4ter/1'>H4</scene> and <scene name='86/868192/Helix_h5/4'>H5</scene>. These residues located in these two helix display high RMSD values meaning that this region is likely to oscillate. The flexibility of H4 and H5 may have a role in the binding to BADH1. Furthermore, the Lysine 180 and 181 are placed on this H5 helix, and they are responsible for the ligation to BAHD1 so it can cause a conformational change. Many amino acids may be involved in the interaction of LntA with its ligand, such as BAHD1. A <scene name='86/868192/Dilysine/1'>dilysine motif located in the elbow region of lntA at position 180/181</scene> has proven to be essential for the interaction with the transcription factor BAHD1. Indeed, when this motif is substituted by two aspartic acid amino acids (K180D/K181D by mutation of LntA), a local redistribution of the charges is observed and lntA is not able anymore to interact with BAHD1. <ref> Lebreton A, Job V, Ragon M, Le Monnier A, Dessen A, Cossart P, Bierne H. 2014. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA </ref>
+
LntA is a small basic protein of 9.7 kDa. This protein is highly conserved in L. monocytogenes and is absent in almost all non-pathogenic Listeria strains . This characteristic suggests that lntA plays a key role in Listeria’s virulence. The acidic part of LntA is composed of aspartic acid (<scene name='86/868192/Acidic/1'>17,8%</scene>) and the basic part is composed of lysine and arginine (<scene name='86/868192/Basic/1'>18,6%</scene>). LntA is composed of 5 alpha-helix, three of them are long antiparallel helix and can be seen as the core of the protein. The two remaining helix stick out the core. The 3 first helix are named <scene name='86/868192/Helix_h1/1'>H1</scene>, <scene name='86/868192/Helix_h2/1'>H2</scene> and <scene name='86/868192/Helix_h3/1'>H3</scene>. The 2 others are <scene name='86/868192/Helix_h4ter/1'>H4</scene> and <scene name='86/868192/Helix_h5/4'>H5</scene>. These residues located in <scene name='86/868192/These_two_helix/1'>these two helix</scene> display high RMSD values meaning that this region is likely to oscillate. The flexibility of H4 and H5 may have a role in the binding to BADH1. Furthermore, the Lysine 180 and 181 are placed on this H5 helix, and they are responsible for the ligation to BAHD1 so it can cause a conformational change. Many amino acids may be involved in the interaction of LntA with its ligand, such as BAHD1. A <scene name='86/868192/Dilysine/1'>dilysine motif located in the elbow region of lntA at position 180/181</scene> has proven to be essential for the interaction with the transcription factor BAHD1. Indeed, when this motif is substituted by two aspartic acid amino acids (K180D/K181D by mutation of LntA), a local redistribution of the charges is observed and lntA is not able anymore to interact with BAHD1. <ref> Lebreton A, Job V, Ragon M, Le Monnier A, Dessen A, Cossart P, Bierne H. 2014. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA </ref>
Third patch has other charged residues which are likely to play a role in the interaction but they are less conserved so they might not be absolutely essential to the formation of the BAHD1-lntA complex.
Third patch has other charged residues which are likely to play a role in the interaction but they are less conserved so they might not be absolutely essential to the formation of the BAHD1-lntA complex.
This protein can also be stabilized by glycerol molecules because they are hydrophobic and it prevents hydrolyzation. (green link)
This protein can also be stabilized by glycerol molecules because they are hydrophobic and it prevents hydrolyzation. (green link)

Revision as of 15:41, 19 January 2022

Structure of LntA

Drag the structure with the mouse to rotate

References

  1. ROHDE JOHN R. Listeria unwinds host’s DNA. SCIENCE, 2011 : 1271-1272
  2. Winter SE, Thiennimitr P et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010
  3. Dewoody, R., Merritt, P.M., Houppert, A.S. and Marketon, M.M. (2011), YopK regulates the Yersinia pestis type III secretion system from within host cells. Molecular Microbiology, 79: 1445-1461. https://doi.org/10.1111/j.1365-2958.2011.07534.x
  4. Lebreton A, Job V, Ragon M, Le Monnier A, Dessen A, Cossart P, Bierne H. 2014. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA
  5. Alice Lebreton. Régulations post-transcriptionnelles de l’expression génique de la cellule hôte en réponse à l’infection bactérienne. Sciences du Vivant, 2015
Personal tools