Sandbox Reserved 1726

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
Anaplastic Lymphoma Kinase (ALK) is a [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] receptor and a member of the family of [https://proteopedia.org/wiki/index.php/Receptor_tyrosine_kinases Receptor Tyrosine Kinases (RTKs)]. RTKs are a family of biomolecules that are primarily responsible for biosignaling pathways such as the insulin signaling pathway. ALK was identified as a novel tyrosine phosphoprotein in 1994 in an analysis of [https://lymphoma.org/aboutlymphoma/nhl/alcl/ Anaplastic Large-Cell Lymphoma], the protein's namesake. A full analysis and characterization of ALK was completed in 1997, properly identifying it as a RTK, and linking it closely to [https://en.wikipedia.org/wiki/Leukocyte_receptor_tyrosine_kinase Leukocyte Tyrosine Kinase] (LTK).
Anaplastic Lymphoma Kinase (ALK) is a [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] receptor and a member of the family of [https://proteopedia.org/wiki/index.php/Receptor_tyrosine_kinases Receptor Tyrosine Kinases (RTKs)]. RTKs are a family of biomolecules that are primarily responsible for biosignaling pathways such as the insulin signaling pathway. ALK was identified as a novel tyrosine phosphoprotein in 1994 in an analysis of [https://lymphoma.org/aboutlymphoma/nhl/alcl/ Anaplastic Large-Cell Lymphoma], the protein's namesake. A full analysis and characterization of ALK was completed in 1997, properly identifying it as a RTK, and linking it closely to [https://en.wikipedia.org/wiki/Leukocyte_receptor_tyrosine_kinase Leukocyte Tyrosine Kinase] (LTK).
== Structure ==
== Structure ==
-
ALK is a close homolog of LTK, and together these two homologues constitute a subgroup within the superfamily of [https://proteopedia.org/wiki/index.php/Insulin_receptor insulin receptors] (IR). ALK is composed of 1620 amino acids, with three primary domains, the extracellular domain, the transmembrane domain, and the intracellular domain. [[Image:N-C Full ALK Structure.PNG|600 px|right|thumb|Figure 1. Overview of Anaplastic Lymphoma Kinase Structure with domains where known structure are color coordinated and other domains are grayed out.]] The intracellular tyrosine kinase domain ranges from residues 1116-1392, and features the [https://en.wikipedia.org/wiki/C-terminus C-terminal end] (Figure 1). The [https://en.wikipedia.org/wiki/Transmembrane_domain transmembrane helical domain] (TMH) bridges the gap between the intracellular and extracellular regions from residues 1039-1116. The final section of ALK is the extracellular region, which spans from residues 1025 to 1, and contains 8 domains. Of these 8 domains, two regions of the extracellular region can be found; one containing the ligand-binding site of the protein, and another lesser-known subregion. This lesser-known subregion contains 4 domains from residues 1-626; an N-terminal Region (NTR), two [https://en.wikipedia.org/wiki/Meprin_A meprin–A-5] protein–receptor protein tyrosine phosphatase μ (MAM), and a [https://en.wikipedia.org/wiki/Low-density_lipoprotein low-density lipoprotein] receptor class A (LDL) domain sandwiched between the two MAM domains. The presence of an LDL domain sandwiched by two MAM domains is a unique feature that ALK does not share with other RTKs. The purpose behind this unique difference is still unclear. The ligand-binding extracellular subregion is the most well-characterized of the two subregions, containing 4 distinct domains from residues 673-1025; a triple helix bundle (THB) domain, a poly Glycine domain (polyG), a tumor necrosis factor-like (TNF-like) domain, and an epidermal growth factor-like domain (EGF-like). All four domains of this subregion of the extracellular region contribute to ligand-binding <ref name ="Huang" />
+
ALK is a close homolog of LTK, and together these two homologues constitute a subgroup within the superfamily of [https://proteopedia.org/wiki/index.php/Insulin_receptor insulin receptors] (IR). ALK is composed of 1620 amino acids, with three primary domains, the extracellular domain, the transmembrane domain, and the intracellular domain. [[Image:Full ALK Structure Graphic.PNG|600 px|right|thumb|Figure 1. Overview of Anaplastic Lymphoma Kinase Structure with domains where known structure are color coordinated and other domains are grayed out.]] The intracellular tyrosine kinase domain ranges from residues 1116-1392, and features the [https://en.wikipedia.org/wiki/C-terminus C-terminal end] (Figure 1). The [https://en.wikipedia.org/wiki/Transmembrane_domain transmembrane helical domain] (TMH) bridges the gap between the intracellular and extracellular regions from residues 1039-1116. The final section of ALK is the extracellular region, which spans from residues 1025 to 1, and contains 8 domains. Of these 8 domains, two regions of the extracellular region can be found; one containing the ligand-binding site of the protein, and another lesser-known subregion. This lesser-known subregion contains 4 domains from residues 1-626; an N-terminal Region (NTR), two [https://en.wikipedia.org/wiki/Meprin_A meprin–A-5] protein–receptor protein tyrosine phosphatase μ (MAM), and a [https://en.wikipedia.org/wiki/Low-density_lipoprotein low-density lipoprotein] receptor class A (LDL) domain sandwiched between the two MAM domains. The presence of an LDL domain sandwiched by two MAM domains is a unique feature that ALK does not share with other RTKs. The purpose behind this unique difference is still unclear. The ligand-binding extracellular subregion is the most well-characterized of the two subregions, containing 4 distinct domains from residues 673-1025; a triple helix bundle (THB) domain, a poly Glycine domain (polyG), a tumor necrosis factor-like (TNF-like) domain, and an epidermal growth factor-like domain (EGF-like). All four domains of this subregion of the extracellular region contribute to ligand-binding <ref name ="Huang" />
=== Domains ===
=== Domains ===
==== Three Helix Bundle-like Domain ====
==== Three Helix Bundle-like Domain ====

Revision as of 19:05, 14 April 2022

This Sandbox is Reserved from February 28 through September 1, 2022 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1700 through Sandbox Reserved 1729.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Anaplastic Lymphoma Kinase Extracellular Region

Structure of Anaplastic Lymphoma Kinase 7N00

Drag the structure with the mouse to rotate
.

References

  1. 1.0 1.1 1.2 1.3 Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018 Nov 2;19(11). pii: ijms19113448. doi: 10.3390/ijms19113448. PMID:30400214 doi:http://dx.doi.org/10.3390/ijms19113448
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Reshetnyak AV, Rossi P, Myasnikov AG, Sowaileh M, Mohanty J, Nourse A, Miller DJ, Lax I, Schlessinger J, Kalodimos CG. Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature. 2021 Dec;600(7887):153-157. doi: 10.1038/s41586-021-04140-8. Epub 2021, Nov 24. PMID:34819673 doi:http://dx.doi.org/10.1038/s41586-021-04140-8
  3. 3.0 3.1 Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature. 2021 Dec;600(7887):148-152. doi: 10.1038/s41586-021-04141-7. Epub 2021, Nov 24. PMID:34819665 doi:http://dx.doi.org/10.1038/s41586-021-04141-7
  4. 4.0 4.1 4.2 4.3 Borenas M, Umapathy G, Lai WY, Lind DE, Witek B, Guan J, Mendoza-Garcia P, Masudi T, Claeys A, Chuang TP, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J. 2021 Feb 1;40(3):e105784. doi: 10.15252/embj.2020105784. Epub 2021 Jan 7. PMID:33411331 doi:http://dx.doi.org/10.15252/embj.2020105784
  5. 5.0 5.1 Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018 Feb 19;17(1):30. doi: 10.1186/s12943-018-0776-2. PMID:29455642 doi:http://dx.doi.org/10.1186/s12943-018-0776-2
Personal tools